Exorcising the Ostrogradsky ghost in coupled systems

@inproceedings{Klein2016ExorcisingTO,
  title={Exorcising the Ostrogradsky ghost in coupled systems},
  author={R. L. Klein and D. van der Roest},
  year={2016}
}
The Ostrogradsky theorem implies that higher-derivative terms of a single mechanical variable are either trivial or lead to additional, ghost-like degrees of freedom. In this letter we systematically investigate how the introduction of additional variables can remedy this situation. Employing a Lagrangian analysis, we identify conditions on the Lagrangian to ensure the existence of primary and secondary constraints that together imply the absence of Ostrogradsky ghosts. We also show the… CONTINUE READING

References

Publications referenced by this paper.
SHOWING 1-10 OF 23 REFERENCES

Phys

  • C. Deffayet, S. Deser, G. Esposito-Farese
  • Rev. D 82
  • 2010
Highly Influential
9 Excerpts

K

  • M. Crisostomi, M. Hull
  • Koyama and G. Tasinato, JCAP 1603
  • 2016

P

  • E. Allys
  • Peter and Y. Rodriguez, JCAP 1602
  • 2016

Phys

  • M. Hull, K. Koyama, G. Tasinato
  • Rev. D 93
  • 2016

F

  • J. Gleyzes, D. Langlois
  • Piazza and F. Vernizzi, JCAP 1502
  • 2015

Phys

  • C. Deffayet, G. Esposito-Farese, D. A. Steer
  • Rev. D 92
  • 2015

Phys

  • H. Motohashi, T. Suyama
  • Rev. D 91, no. 8, 085009
  • 2015

Phys

  • J. Gleyzes, D. Langlois, F. Piazza, F. Vernizzi
  • Rev. Lett. 114
  • 2015

Phys

  • M. Zumalacárregui, J. Garćıa-Bellido
  • Rev. D 89
  • 2014

Phys

  • G. Gabadadze, K. Hinterbichler, J. Khoury, D. Pirtskhalava, M. Trodden
  • Rev. D 86
  • 2012

Similar Papers

Loading similar papers…