Existential closure of block intersection graphs of infinite designs having infinite block size
@article{Horsley2011ExistentialCO, title={Existential closure of block intersection graphs of infinite designs having infinite block size}, author={Daniel Horsley and David A. Pike and Asiyeh Sanaei}, journal={Journal of Combinatorial Designs}, year={2011}, volume={19} }
A graph G is n‐existentially closed (n‐e.c.) if for each pair (A, B) of disjoint subsets of V(G) with |A| + |B|≤n there exists a vertex in V(G)\(A∪B) which is adjacent to each vertex in A and to no vertex in B. In this paper we study the n‐existential closure property of block intersection graphs of infinite designs with infinite block size. © 2011 Wiley Periodicals, Inc. J Combin Designs 19:317‐327, 2011
10 Citations
Existential Closure in Line Graphs
- Mathematics
- 2022
A graph G is n -existentially closed if, for all disjoint sets of vertices A and B with | A ∪ B | = n , there is a vertex z not in A ∪ B adjacent to each vertex of A and to no vertex of B . In this…
Further Results on Existentially Closed Graphs Arising from Block Designs
- MathematicsGraphs Comb.
- 2019
The block intersection graphs of pairwise balanced designs of pair wise balanced designs are investigated, and a sufficient condition for such graphs to be 2-e.c. are established.
The modular product and existential closure
- MathematicsAustralas. J Comb.
- 2012
The modular product graph operation, denoted by ♦, is studied, with particular emphasis on when the operation preserves the property of a graph being 3-existentially closed.
University ’ s repository of research publications and other research outputs Resolvability of infinite designs
- Mathematics
- 2016
In this paper we examine the resolvability of infinite designs. We show that in stark contrast to the finite case, resolvability for infinite designs is fairly commonplace. We prove that every t-(v,…
Further Results on Existentially Closed Graphs Arising from Block Designs
- Materials ScienceGraphs and Combinatorics
- 2019
A graph is n-existentially closed (n-e.c.) if for any disjoint subsets A, B of vertices with A∪B=n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts}…
The Thermodynamics of Network Coding, and an Algorithmic Refinement of the Principle of Maximum Entropy †
- Computer ScienceEntropy
- 2019
The analysis provides insight in that the reprogrammability asymmetry appears to originate from a non-monotonic relationship to algorithmic probability, which motivates further analysis of the origin and consequences of the aforementioned asymmetries, reprogmability, and computation.
Resolvability of infinite designs Journal Item
- Mathematics
- 2018
In this paper we examine the resolvability of infinite designs. We show that in stark contrast to the finite case, resolvability for infinite designs is fairly commonplace. We prove that every t-(v,…
The modular product and existential closure II
- MathematicsAustralas. J Comb.
- 2013
This article studies the modular graph product, ♦, that is known to preserve the property of being 3-existentially closed (i.e., 3-e.c.c.), and finds the sufficient conditions on the adjacency properties of H such that G♦H is 3- e.c., which is an improvement in comparison to when at least one of G or H were required to be 3-E.
Existential closure of graphs
- Mathematics
- 2011
We study the n-existential closure property of graphs which was first considered by Erdos and Renyi in 1963. A graph G is said to be n-existentially closed, abbreviated as n-e.c., if for each pair…
References
SHOWING 1-10 OF 10 REFERENCES
Existential closure of block intersection graphs of infinite designs having finite block size and index
- Mathematics
- 2011
In this article we study the n‐existential closure property of the block intersection graphs of infinite t‐(v, k, λ) designs for which the block size k and the index λ are both finite. We show that…
Existentially Closed BIBD Block-Intersection Graphs
- MathematicsElectron. J. Comb.
- 2007
This paper study BIBDs (balanced incomplete block designs) and when their block-intersection graphs are $n-existentially closed and it is proved that only simple $\lambda$-fold designs can have $n$-e.c. c.
A Prolific Construction of Strongly Regular Graphs with the n-e.c. Property
- MathematicsElectron. J. Comb.
- 2002
By taking the affine designs to be Hadamard designs obtained from Paley tournaments, probabilistic methods are used to show that many non-isomorphic strongly regular graphs that are known to be $n-e.c. for large $n$ are shown.
Paley graphs satisfy all first-order adjacency axioms
- MathematicsJ. Graph Theory
- 1981
It is shown that, for each n, all sufficiently large Paley graphs satisfy Axiom n, which concludes at once that several properties of graphs are not first order, including self-complementarity and regularity.
What is an infinite design?
- Art, Mathematics
- 2002
It is usually assumed that an infinite design is a design with infinitely many points. This encompasses a myriad of structures, some nice and others not. In this paper we consider examples of…
Graphs with the n‐e.c. adjacency property constructed from resolvable designs
- Mathematics
- 2009
Only recently have techniques been introduced that apply design theory to construct graphs with the n‐e.c. adjacency property. We supply a new random construction for generating infinite families of…
Graphs with the n-e.c. adjacency property constructed from affine planes
- MathematicsDiscret. Math.
- 2008
Steiner Triple Systems and Existentially Closed Graphs
- MathematicsElectron. J. Comb.
- 2005
The conditions under which a Steiner triple system can have a 2- or 3-existentially closed block intersection graph are investigated.