Existence of outermost apparent horizons with product of spheres topology
@article{Schwartz2007ExistenceOO, title={Existence of outermost apparent horizons with product of spheres topology}, author={Fernando Schwartz}, journal={arXiv: General Relativity and Quantum Cosmology}, year={2007} }
In this paper we find new examples of Riemannian manifolds with outermost apparent horizons with nonspherical topology, in dimensions four and above. More precisely, for any $n,m\ge1$, we construct asymptotically flat, scalar flat Riemannian manifolds containing smooth outermost minimal hypersurfaces with topology $S^n\times S^{m+1}$. In the context of general relativity these hypersurfaces correspond to outermost apparent horizons of black holes.
12 Citations
Outermost apparent horizons diffeomorphic to unit normal bundles
- Mathematics
- 2018
Given a submanifold $S \subset \mathbb R^n$ of codimension at least three, we construct an asymptotically Euclidean Riemannian metric on $\mathbb R^n$ with nonnegative scalar curvature for which the…
New generalized nonspherical black hole solutions
- Physics, Mathematics
- 2010
We present numerical evidence for the existence of several types of static black hole solutions with a nonspherical event horizon topology in d ≥ 6 spacetime dimensions. These asymptotically flat…
The Bernstein conjecture, minimal cones and critical dimensions
- Mathematics
- 2009
Minimal surfaces and domain walls play important roles in various contexts of spacetime physics as well as material science. In this paper, we first review the Bernstein conjecture, which asserts…
1 Constraints on the topology of higher dimensional black holes
- Physics
- 2012
As discussed in the first chapter, black holes in four dimensions satisfy remarkable uniqueness properties. Of fundamental importance is the classical result of Carter, Hawking and Robinson that the…
A Volumetric Penrose Inequality for Conformally Flat Manifolds
- Mathematics
- 2011
We consider asymptotically flat Riemannian manifolds with non-negative scalar curvature that are conformal to $${\mathbb{R}^{n}{\setminus} \Omega, n\ge 3}$$, and so that their boundary is a minimal…
Gravitational Chern-Simons terms and black hole entropy. Global aspects
- Geology
- 2012
A bstractWe discuss the topological and global gauge properties of the formula for a black hole entropy due to a purely gravitational Chern-Simons term. We study under what topological and…
Gravitational Chern-Simons terms and black hole entropy. Global aspects
- Physics
- 2012
We discuss the topological and global gauge properties of the formula for a black hole entropy due to a purely gravitational Chern-Simons term. We study under what topological and geometrical…
Black Holes in Higher Dimensions: Constraints on the topology of higher-dimensional black holes
- Physics
- 2012
Although a black hole need not be spherical in higher dimensions, its event horizon cannot have arbitrary topology. Here we review some of the known constraints on horizon topology for higher…
Analysis, Geometry and Topology of Positive Scalar Curvature Metrics
- Mathematics
- 2014
Riemannian manifolds with positive scalar curvature play an important role in mathematics and general relativity. Obstruction and existence results are connected to index theory, bordism theory and…
The Phase Structure of Higher-Dimensional Black Rings and Black Holes
- Physics
- 2007
We construct an approximate solution for an asymptotically flat, neutral, thin rotating black ring in any dimension D ≥ 5 by matching the near-horizon solution for a bent boosted black string, to a…
References
SHOWING 1-10 OF 58 REFERENCES
The inverse mean curvature flow and the Riemannian Penrose Inequality
- Mathematics
- 2001
Let M be an asymptotically flat 3-manifold of nonnegative scalar curvature. The Riemannian Penrose Inequality states that the area of an outermost minimal surface N in M is bounded by the ADM mass m…
PROOF OF THE RIEMANNIAN PENROSE INEQUALITY USING THE POSITIVE MASS THEOREM
- Mathematics
- 2001
We prove the Riemannian Penrose Conjecture, an important case of a con- jecture (41) made by Roger Penrose in 1973, by defining a new flow of metrics. This flow of metrics stays inside the class of…
Rigidity of outer horizons and the topology of black holes
- Mathematics
- 2006
In a recent paper [13] the author and Rick Schoen obtained a generalization to higher dimensions of a classical result of Hawking concerning the topology of black holes. It was proved that, apart…
The mass of an asymptotically flat manifold
- Mathematics
- 1986
We show that the mass of an asymptotically flat n-manifold is a geometric invariant. The proof is based on harmonic coordinates and, to develop a suitable existence theory, results about elliptic…
A Generalization of Hawking’s Black Hole Topology Theorem to Higher Dimensions
- Mathematics
- 2005
Hawking’s theorem on the topology of black holes asserts that cross sections of the event horizon in 4-dimensional asymptotically flat stationary black hole spacetimes obeying the dominant energy…
A rotating black ring solution in five dimensions.
- PhysicsPhysical review letters
- 2002
The vacuum Einstein equations in five dimensions are shown to admit a solution describing a stationary asymptotically flat spacetime regular on and outside an event horizon of topology S1xS2. It…
Regularity Theory for Mean Curvature Flow
- Mathematics
- 2003
1 Introduction.- 2 Special Solutions and Global Behaviour.- 3 Local Estimates via the Maximum Principle.- 4 Integral Estimates and Monotonicity Formulas.- 5 Regularity Theory at the First Singular…
On the structure of manifolds with positive scalar curvature
- Mathematics
- 1979
Publisher Summary This chapter discusses some recent results by Richard Schoen and Shing-Tung Yau on the structure of manifolds with positive scalar curvature. The chapter presents theorems which are…
Embedded minimal surfaces, exotic spheres, and manifolds with positive Ricci curvature
- Mathematics
- 1982
Let N be a three dimensional Riemannian manifold. Let E be a closed embedded surface in N. Then it is a question of basic interest to see whether one can deform : in its isotopy class to some…
Stable and singular solutions of the equation Δu = 1/u
- Mathematics
- 2004
hhWe study properties of the semilinear elliptic equation Δu = 1/u on domains in R n , with an eye toward non-negative singular solutions as limits of positive smooth solutions. We prove the…