Existence of hyperbolic calorons
@article{Sibner2015ExistenceOH, title={Existence of hyperbolic calorons}, author={Lesley M. Sibner and Robert J. Sibner and Yisong Yang}, journal={Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences}, year={2015}, volume={471} }
Recent work of Harland shows that the SO(3)-symmetric, dimensionally reduced, charge-N self-dual Yang–Mills calorons on the hyperbolic space H3×S1 may be obtained through constructing N-vortex solutions of an Abelian Higgs model as in the study of Witten on multiple instantons. In this paper, we establish the existence of such minimal action charge-N calorons by constructing arbitrarily prescribed N-vortex solutions of the Witten type equations.
References
SHOWING 1-10 OF 27 REFERENCES
Hyperbolic Calorons, Monopoles, and Instantons
- Mathematics
- 2008
We construct families of SO(3)-symmetric charge 1 instantons and calorons on the space $${\mathbb{H}^3 \times \mathbb{R}}$$ . We show how the calorons include instantons and hyperbolic monopoles as…
Classical solutions of SU (2) Yang--Mills theories
- History
- 1979
A comprehensive review of the known classical solutions of $\mathrm{SU}(2)$ gauge theories is presented. The author follows the historical development of this subject from its beginning (the first…
N‐dimensional instantons and monopoles
- Mathematics
- 1980
The possibility of finding solutions of the instanton and monopole types to gauge field theories on arbitrary even and odd dimensional Euclidean manifolds respectively is investigated. Suitable…
Multiple Instantons Representing Higher-Order Chern–Pontryagin Classes, II
- Mathematics
- 2003
This paper is a continuation of an earlier study on the generalized Yang–Mills instantons over 4m-dimensional spheres. We will first present a discussion on the generalized Yang–Mills equations, the…
Singular instantons with SO(3) symmetry
- Mathematics
- 2005
This article provides an explicit construction for a family of singular instantons on S^4 S^2 with arbitrary real holonomy parameter \alpha. This family includes the original \alpha = 1/4, c_2 = 3/2…
Multiple Instantons Representing Higher-Order Chern–Pontryagin Classes
- Mathematics
- 1997
Abstract:It has been shown in the work of Chakrabarti, Sherry and Tchrakian that the
chiral SO±(4 p) Yang–Mills theory in the Euclidean 4 p (p≥ 2) dimensions allows an axially symmetric self-dual…
Zero and Infinite Curvature Limits of Hyperbolic Monopoles
- Mathematics
- 1997
We show that the zero curvature limit of the space of hyperbolic monopoles gives the Euclidean monopoles, settling a conjecture of Atiyah. We also study the infinite curvature limit of the space of…
Geometry of hyperbolic monopoles
- Mathematics
- 1986
The hyperbolic monopoles of Atiyah [M. F. Atiyah, Commun. Math. Phys. 93, 471 (1984); ‘‘Magnetic monopoles in hyperbolic space,’’ in Proceedings of the International Colloquium on Vector Bundles…
Some exact multipseudoparticle solutions of classical Yang--Mills theory
- Physics
- 1977
I present some exact solutions of the Polyakov--Belavin--Schwartz--Tyupkin equation F/sub ..mu nu../ =F/sub ..mu..//sub ..nu../ for an SU(2) gauge theory in Euclidean space. My solutions describe a…
THE SELF-DUALITY EQUATIONS ON A RIEMANN SURFACE
- Mathematics
- 1987
In this paper we shall study a special class of solutions of the self-dual Yang-Mills equations. The original self-duality equations which arose in mathematical physics were defined on Euclidean…