Existence and Multiplicity of Solutions for the Noncoercive Neumann P-laplacian

@inproceedings{Papageorgiou2010ExistenceAM,
  title={Existence and Multiplicity of Solutions for the Noncoercive Neumann P-laplacian},
  author={Nikolaos S. Papageorgiou and Eug{\'e}nio M. Rocha},
  year={2010}
}
We consider a nonlinear Neumann problem driven by the p-Laplacian differential operator with a nonsmooth potential (hemivariational inequality). Using variational techniques based on the smooth critical point theory and the second deformation theorem, we prove an existence theorem and a multiplicity theorem, under hypothesis that in general do not imply the coercivity of the Euler functional. 

From This Paper

Topics from this paper.

Citations

Publications citing this paper.

References

Publications referenced by this paper.
Showing 1-10 of 17 references

On the second deformation lemma, Topol

  • J.-N. Corvellec
  • Meth. Nonlin. Anal
  • 2001
Highly Influential
4 Excerpts

Existence of infinitely many weak solutions for a Neumann problem, Nonlin

  • G. Anello
  • 2004
Highly Influential
4 Excerpts

Existence and multiplicity for Neumann problems

  • D. Motreanu, N. S. Papageorgiou
  • J. Diff. Eqns
  • 2007
3 Excerpts

Nonsmooth Variational Problems and their Inequalities: Comparison Principles and Applications

  • S. Carl, V. K. Le, D. Motreanu
  • 2007
1 Excerpt

Multiplicity results for nonlinear Neumann problems, Canad

  • M. Filippakis, L. Gasinski, N. S. Papageorgiou
  • J. Math
  • 2006
2 Excerpts

On the existence and multiplicty of solutions of Neumann boundary problems for quasilinear elliptic equations, Nonlin

  • X. Wu, K. K. Tan
  • Nikolaos S. Papageorgiou Department of…
  • 2006
1 Excerpt

Some multiplicity results for quasilinear Neumann problems

  • F. Cammaroto, A. Chinni, B. DiBella
  • Archiv der Math 86(2006),
  • 2006
1 Excerpt

Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems

  • L. Gasinski, N. S. Papageorgiou
  • 2005
1 Excerpt

Multiplicity results for a Neumann problem involving the p-Laplacian

  • F. Faraci
  • J. Math. Anal. Appl
  • 2003
1 Excerpt

Similar Papers

Loading similar papers…