Examples of genus two CM curves defined over the rationals

@article{Wamelen1999ExamplesOG,
  title={Examples of genus two CM curves defined over the rationals},
  author={Paul B. van Wamelen},
  journal={Math. Comput.},
  year={1999},
  volume={68},
  pages={307-320}
}
We present the results of a systematic numerical search for genus two curves defined over the rationals such that their Jacobians are simple and have endomorphism ring equal to the ring of integers of a quartic CM field. Including the well-known example y2 = x5−1 we find 19 non-isomorphic such curves. We believe that these are the only such curves. 
Highly Cited
This paper has 65 citations. REVIEW CITATIONS

From This Paper

Topics from this paper.
46 Citations
13 References
Similar Papers

Citations

Publications citing this paper.

66 Citations

051015'99'03'08'13'18
Citations per Year
Semantic Scholar estimates that this publication has 66 citations based on the available data.

See our FAQ for additional information.

References

Publications referenced by this paper.
Showing 1-10 of 13 references

Determination of all non-normal quartic CM-fields and of all non-abelian normal octic CM-fields with class number one

  • S. Louboutin, R. Okazaki
  • Acta Arith., 67(1):47–62,
  • 1994
1 Excerpt

Complex Abelian Varieties

  • H. Lange, C. Birkenhake
  • Springer-Verlag,
  • 1992

Construction de courbes de genre 2 à partir de leurs modules

  • J.-F. Mestre
  • In Effective Methods in Algebraic Geometry…
  • 1991
1 Excerpt

The determination of all imaginary cyclic quartic fields with class number 2

  • K. Hardy, R. H. Hudson, D. Richman, K. S. Williams
  • Trans. Amer. Math. Soc., 311(1):1–55,
  • 1989
2 Excerpts

Tata Lectures on Theta II, volume 43 of Progr

  • D. Mumford
  • Math. Birkhäuser,
  • 1984
1 Excerpt

Complex Multiplication

  • S. Lang
  • Springer-Verlag,
  • 1983
1 Excerpt

Introduction to Cyclotomic Fields

  • L. C. Washington
  • Springer-Verlag,
  • 1982

The determination of all imaginary, quartic, abelian number fields with class number 1

  • B. Setzer
  • Math. Comp., 35(152):1383–1386,
  • 1980
2 Excerpts

A Course in Arithmetic

  • J.-P. Serre
  • Springer-Verlag,
  • 1973
1 Excerpt

Similar Papers

Loading similar papers…