Examination of an inducible expression system for limiting iron availability during Chlamydia trachomatis infection.

Abstract

The obligate intracellular bacterium Chlamydia trachomatis requires iron in order to complete its developmental cycle. Addition of an iron-chelating drug, Desferal (deferoxamine mesylate), to infected cell culture causes Chlamydia to enter persistence. Here, we explore the ability of a stably-transfected cell line with inducible over-expression of the eukaryotic iron efflux protein ferroportin to starve C. trachomatis serovar E for iron. Ferroportin-induced iron removal is perhaps a more direct method of removing iron from the intracellular compartment versus exposure to an exogenous chemical chelator. Following induction, ferroportin-green fluorescent protein (Fpn-GFP) was detected in the plasma membrane, and cells expressing Fpn-GFP remained viable throughout the timescale required for Chlamydia to complete its developmental cycle. Following Fpn-GFP induction in infected cells, chlamydial infectivity remained unchanged, indicating chlamydiae were not in persistence. Ferritin levels indicate only a small decrease in cellular iron following Fpn-GFP expression relative to cultures exposed to Desferal. These data indicate that expression of Fpn-GFP in chlamydiae-infected cells is not capable of reducing iron below the threshold concentration needed to cause chlamydiae to enter persistence.

Cite this paper

@article{Dill2007ExaminationOA, title={Examination of an inducible expression system for limiting iron availability during Chlamydia trachomatis infection.}, author={Brian D. Dill and Jane E Raulston}, journal={Microbes and infection}, year={2007}, volume={9 8}, pages={947-53} }