Exact lower and upper bounds for shifts of Gaussian measures
@article{Pinelis2022ExactLA, title={Exact lower and upper bounds for shifts of Gaussian measures}, author={Iosif Pinelis}, journal={Teoriya Veroyatnostei i ee Primeneniya}, year={2022} }
Получены точные верхние и нижние грани для отношения $\operatorname{\mathbf E}w(\mathbf X-\mathbf v)/\operatorname{\mathbf E}w(\mathbf X)$ для центрированного гауссовского случайного вектора $\mathbf X$ в $\mathbf R^n$, а также оценки скорости изменения $\operatorname{\mathbf E}w(\mathbf X-t\mathbf v)$ по отношению к $t$, где $w\colon\mathbf R^n\to[0,\infty)$ - произвольная одновершинная функция и $\mathbf v$ - произвольный вектор в $\mathbf R^n…
References
SHOWING 1-10 OF 10 REFERENCES
Real Analysis
- Mathematics
- 2009
– Weierstrass Theorem Theorem If f is a continuous real-valued function on [a, b] and if any is given, then there exists a polynomial p on [a, b] s.t. |f(x)− p(x)| < for all x ∈ [a, b]. In other…
On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation
- Mathematics
- 1976
We extend the Prekopa-Leindler theorem to other types of convex combinations of two positive functions and we strengthen the Prekopa—Leindler and Brunn-Minkowski theorems by introducing the notion of…
Schur2-concavity properties of Gaussian measures, with applications to hypotheses testing
- MathematicsJ. Multivar. Anal.
- 2014
On l'Hospital-type rules for monotonicity.
- Mathematics
- 2006
Elsewhere we developed rules for the monotonicity pattern of the ratio r := f/g of two differentiable functions on an interval (a,b) based on the monotonicity pattern of the ratio := f 0 /g 0 of the…
The Brunn-Minkowski inequality
- Mathematics
- 2002
In 1978, Osserman [124] wrote an extensive survey on the isoperimetric inequality. The Brunn-Minkowski inequality can be proved in a page, yet quickly yields the classical isoperimetric inequality…
The integral of a symmetric unimodal function over a symmetric convex set and some probability inequalities
- Mathematics
- 1955
Convex analysis, Princeton Landmarks in Mathematics
- 1997
Folland , Real analysis , Pure and Applied Mathematics ( New York ) , John Wiley & Sons Inc . , New York , 1984 , Modern techniques and their applications , A Wiley - Interscience Publication
Real analysis, Pure and Applied Mathematics (New York)
- MR MR767633
- 1984