Exact $$\beta $$-functions for $$\mathcal{N}=1$$ supersymmetric theories finite in the lowest loops

@article{Stepanyantz2021Exact,
  title={Exact \$\$\beta \$\$-functions for \$\$\mathcal\{N\}=1\$\$ supersymmetric theories finite in the lowest loops},
  author={Konstantin Stepanyantz},
  journal={The European Physical Journal C},
  year={2021}
}
  • K. Stepanyantz
  • Published 3 May 2021
  • Physics
  • The European Physical Journal C
<jats:p>We consider a one-loop finite <jats:inline-formula><jats:alternatives><jats:tex-math>$$\mathcal{N}=1$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>N</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula> supersymmetric theory in such a renormalization scheme that the first… 
1 Citations
The NSVZ relations for $$ \mathcal{N} $$ = 1 supersymmetric theories with multiple gauge couplings
Abstract We investigate the NSVZ relations for $$ \mathcal{N} $$ N = 1 supersymmetric gauge theories with multiple gauge couplings. As examples, we consider MSSM and the flipped SU(5) model, for

References

SHOWING 1-10 OF 130 REFERENCES
Phys
  • Lett. B 785
  • 2018
Phys
  • Lett. 155B
  • 1985
Finiteness of the two-loop matter contribution to the triple gauge-ghost vertices in N=1 supersymmetric gauge theories regularized by higher derivatives
For a general renormalizable N = 1 supersymmetric gauge theory with a simple gauge group we verify the ultraviolet (UV) finiteness of the two-loop matter contribution to the triple gauge-ghost
Effect of scheme transformations on a beta function with vanishing one-loop term
It is commonly stated that because terms in the beta function of a theory at the level of $\ell \ge 3$ loops and higher are scheme-dependent, it is possible to define scheme transformations that can
Eur
  • Phys. J. C 80
  • 2020
Exact β-Function in Abelian and non-Abelian $${\cal N} = 1$$ Supersymmetric Gauge Models and Its Analogy with the QCD β-Function in the C-scheme
For ${\cal N} = 1$ supersymmetric Yang—Mills theory without matter it is demonstrated that there is a class of renormalization schemes, in which the exact Novikov, Shifman, Vainshtein, and Zakharov
Horava-Lifshitz four-fermion model revisited and dynamical symmetry breaking
In this paper, we develop studies of the dynamical symmetry breaking in the Horava-Lifshitz four-fermion model for the specific case $z=3$ and explicitly demonstrate that for various space-time
JETP Lett
  • 111 (2020) no.12, 663 [Pisma Zh. Eksp. Teor. Fiz. 111
  • 2020
Phys
  • Rev. D 102
  • 2020
Phys
  • Rev. D 101
  • 2020
...
1
2
3
4
5
...