Every Module Is an Inverse Limit of Injectives

It is shown that any left module A over a ring R can be written as the intersection of a downward directed system of injective submodules of an injective module; equivalently, as an inverse limit of one-to-one homomorphisms of injectives. If R is left Noetherian, A can also be written as the inverse limit of a system of surjective homomorphisms of… CONTINUE READING