Even unimodular 8-dimensional quadratic forms over $$\mathbb{Q}\left( {\sqrt 2 } \right)$$

@article{Hsia1989EvenU8,
  title={Even unimodular 8-dimensional quadratic forms over
\$\$\mathbb\{Q\}\left( \{\sqrt 2 \} \right)\$\$
},
  author={John S. Hsia and David C. Hung},
  journal={Mathematische Annalen},
  year={1989},
  volume={283},
  pages={367-374}
}
5 Citations

Automorphic forms for some even unimodular lattices

We look at genera of even unimodular lattices of rank 12 over the ring of integers of $${{\mathbb {Q}}}(\sqrt{5})$$ Q ( 5 ) and of rank 8 over the ring of integers of $${{\mathbb {Q}}}(\sqrt{3})$$ Q

Golden lattices

Let θ := −1+ √ 5 2 be the golden ratio. A golden lattice is an even unimodular Z[θ]-lattice of which the Hilbert theta series is an extremal Hilbert modular form. We construct golden lattices from

Even positive definite unimodular quadratic forms over (√3)

A complete list of even unimodular lattices over Q(\/3) is given for each dimension n = 2, 4, 6, 8 . Siegel's mass formula is used to verify the completeness of the list. Alternate checks are given

References

SHOWING 1-10 OF 11 REFERENCES

Even positive definite unimodular quadratic forms over real quadratic fields

In spite of the numberous connections between even positive definite unimodular quadratic forms (henceforth referred to as even unimodular lattices) over Q with other subjects (e.g., finite group

Introduction to quadratic forms

Prerequisites ad Notation Part One: Arithmetic Theory of Fields I Valuated Fields Valuations Archimedean Valuations Non-Archimedean valuations Prolongation of a complete valuation to a finite

Die Bestimmung der Funktionen zu einigen Hilbertschen Modulgruppen.

Der Funktionenkörper zur rationalen Modulgruppe ist bekanntlich ein rationaler Funktionenkörper, erzeugt durch die Invariante / ( ), und auch die ganzen Modulformen (zum trivialen