Even positive definite unimodular quadratic forms over (√3)

  title={Even positive definite unimodular quadratic forms over (√3)},
  author={David C. Hung},
  journal={Mathematics of Computation},
  • D. C. Hung
  • Published 1 September 1991
  • Mathematics
  • Mathematics of Computation
A complete list of even unimodular lattices over Q(\/3) is given for each dimension n = 2, 4, 6, 8 . Siegel's mass formula is used to verify the completeness of the list. Alternate checks are given using theta series and the adjacency graph of the genus at the dyadic prime 1 + \/3 . 
3 Citations

Tables from this paper

Golden lattices
Let θ := −1+ √ 5 2 be the golden ratio. A golden lattice is an even unimodular Z[θ]-lattice of which the Hilbert theta series is an extremal Hilbert modular form. We construct golden lattices from
Automorphic forms for some even unimodular lattices
We look at genera of even unimodular lattices of rank 12 over the ring of integers of $${{\mathbb {Q}}}(\sqrt{5})$$ Q ( 5 ) and of rank 8 over the ring of integers of $${{\mathbb {Q}}}(\sqrt{3})$$ Q


On the enumeration of lattices of determinant one
Spinor equivalence of quadratic forms
Definite quadratische formen der dimension 24 und diskriminante 1
Die Bestimmung der Funktionen zu einigen Hilbertschen Modulgruppen.
Der Funktionenkörper zur rationalen Modulgruppe ist bekanntlich ein rationaler Funktionenkörper, erzeugt durch die Invariante / ( ), und auch die ganzen Modulformen (zum trivialen