Even positive definite unimodular quadratic forms over (√3)
@article{Hung1991EvenPD, title={Even positive definite unimodular quadratic forms over (√3)}, author={David C. Hung}, journal={Mathematics of Computation}, year={1991}, volume={57}, pages={351-368} }
A complete list of even unimodular lattices over Q(\/3) is given for each dimension n = 2, 4, 6, 8 . Siegel's mass formula is used to verify the completeness of the list. Alternate checks are given using theta series and the adjacency graph of the genus at the dyadic prime 1 + \/3 .
Tables from this paper
3 Citations
Golden lattices
- Mathematics
- 2012
Let θ := −1+ √ 5 2 be the golden ratio. A golden lattice is an even unimodular Z[θ]-lattice of which the Hilbert theta series is an extremal Hilbert modular form. We construct golden lattices from…
Automorphic forms for some even unimodular lattices
- MathematicsAbhandlungen aus dem Mathematischen Seminar der Universität Hamburg
- 2021
We look at genera of even unimodular lattices of rank 12 over the ring of integers of $${{\mathbb {Q}}}(\sqrt{5})$$ Q ( 5 ) and of rank 8 over the ring of integers of $${{\mathbb {Q}}}(\sqrt{3})$$ Q…
References
SHOWING 1-10 OF 17 REFERENCES
Die Bestimmung der Funktionen zu einigen Hilbertschen Modulgruppen.
- Mathematics
- 1965
Der Funktionenkörper zur rationalen Modulgruppe ist bekanntlich ein rationaler Funktionenkörper, erzeugt durch die Invariante / ( ), und auch die ganzen Modulformen (zum trivialen…