Even faster integer multiplication

@article{Harvey2016EvenFI,
  title={Even faster integer multiplication},
  author={David Harvey and J. V. D. Hoeven and G. Lecerf},
  journal={J. Complex.},
  year={2016},
  volume={36},
  pages={1-30}
}
We give a new proof of Furer's bound for the cost of multiplying n-bit integers in the bit complexity model. Unlike Furer, our method does not require constructing special coefficient rings with ''fast'' roots of unity. Moreover, we establish the improved bound O(n log n K^(log^∗ n)) with K=8. We show that an optimised variant of Furer's algorithm achieves only K=16, suggesting that the new algorithm is faster than Furer's by a factor of 2^(log^∗ n). Assuming standard conjectures about the… Expand
79 Citations
Fast arithmetic for faster integer multiplication
  • 4
  • PDF
Fast integer multiplication using generalized Fermat primes
  • 9
  • Highly Influenced
  • PDF
Faster Polynomial Multiplication over Finite Fields
  • 51
  • PDF
Faster polynomial multiplication over nite elds
  • 7
  • PDF
A babystep-giantstep method for faster deterministic integer factorization
  • 7
  • PDF
Faster integer multiplication using short lattice vectors
  • 30
  • PDF
Polynomial multiplication over finite fields in time O ( n log n )
  • ORIS VAN DER, OEVEN
  • 2019
  • Highly Influenced
  • PDF
Efficient Big Integer Multiplication in Cryptography
  • 3
...
1
2
3
4
5
...

References

SHOWING 1-10 OF 90 REFERENCES
Fast integer multiplication using modular arithmetic
  • 45
  • Highly Influential
  • PDF
Faster Polynomial Multiplication over Finite Fields
  • 51
  • PDF
Faster integer multiplication
  • M. Fürer
  • Mathematics, Computer Science
  • STOC '07
  • 2007
  • 222
The Complexity of Computations
  • 46
Fast Polynomial Multiplication over F260
  • 16
  • PDF
How Fast Can We Multiply Large Integers on an Actual Computer?
  • M. Fürer
  • Computer Science, Mathematics
  • LATIN
  • 2014
  • 11
  • PDF
Complexity Of Computations
  • 102
  • Highly Influential
Discrete weighted transforms and large-integer arithmetic
  • 86
  • Highly Influential
  • PDF
The use of finite fields to compute convolutions
  • 171
...
1
2
3
4
5
...