Evaluation of basement membrane degradation during TNF-alpha-induced increase in epithelial permeability.


We evaluated whether tumor necrosis factor (TNF)-alpha induces an increase in permeability of an alveolar epithelial monolayer via gelatinase secretion and basement membrane degradation. Gelatinase secretion and epithelial permeability to radiolabeled albumin under unstimulated and TNF-alpha-stimulated conditions of an A549 human epithelial cell line were evaluated in vitro. TNF-alpha induced both upregulation of a 92-kDa gelatinolytic activity (pro form in cell supernatant and activated form in extracellular matrix) and an increase in the epithelial permeability coefficient compared with the unstimulated condition (control: 1.34 +/- 0.04 x 10(-6) cm/s; 1 microg/ml TNF-alpha: 1.47 +/- 0.05 x 10(-6) cm/s, P < 0.05). The permeability increase in the TNF-alpha-stimulated condition involved both paracellular permeability, with gap formation visualized by actin cytoskeleton staining, and basement membrane permeability, with an increase in the basement membrane permeability coefficient (determined after cell removal; control: 2.58 +/- 0.07 x 10(-6) cm/s; 1 microg/ml TNF-alpha: 2.82 +/- 0.02.10(-6) x cm/s, P < 0.05). Because addition of gelatinase inhibitors [tissue inhibitor of metalloproteinase (TIMP)-1 or BB-3103] to cell supernatants failed to inhibit the permeability increase, the gelatinase-inhibitor balance in the cellular microenvironment was further evaluated by cell culture on a radiolabeled collagen matrix. In the unstimulated condition, spontaneous collagenolytic activity inhibited by addition to the matrix of 1 microg/ml TIMP-1 or 10(-6) M BB-3103 was found. TNF-alpha failed to increase this collagenolytic activity because it was associated with dose-dependent upregulation of TIMP-1 secretion by alveolar epithelial cells. In conclusion, induction by TNF-alpha of upregulation of both the 92-kDa gelatinase and its inhibitor TIMP-1 results in maintenance of the gelatinase-inhibitor balance, indicating that basement membrane degradation does not mediate the TNF-alpha-induced increase in alveolar epithelial monolayer permeability.


Citations per Year

121 Citations

Semantic Scholar estimates that this publication has 121 citations based on the available data.

See our FAQ for additional information.

Cite this paper

@article{Lacherade2001EvaluationOB, title={Evaluation of basement membrane degradation during TNF-alpha-induced increase in epithelial permeability.}, author={Jean Claude Lacherade and Andry van de Louw and Emmanuelle Planus and E F Escudier and M P D'ortho and Chantal Lafuma and A. Harf and Christophe Delclaux}, journal={American journal of physiology. Lung cellular and molecular physiology}, year={2001}, volume={281 1}, pages={L134-43} }