Evaluation and comparison of three IR detectors and three amplifier designs for a new, high-speed IR pyrometer

Abstract

At Los Alamos National Laboratory (LANL), a high-speed, four-wavelength, infrared (IR) pyrometer has been used for surface temperature measurements in shock-physics experiments for several years. The pyrometer uses solidstate detectors and a single fiber-optic cable for transmission of light from the target surface to the detectors. This instrument has recently been redesigned for an upcoming experiment at the Nevada Test Site (NTS). Three different IR detectors (two HgCdTe variants as well as the existing InSb chip) were compared for sensitivity, signal-to-noise ratio, and bandwidth. Of major concern was detector amplifier recovery time from overload saturation. In shockphysics experiments, a short but very bright precursor frequently accompanies shock breakout (often from trapped air). This precursor can saturate the amplifier and may “swamp-out” the signal of interest before the amplifier recovers. With this in mind, we evaluated two new amplifier designs by the Perry Amplifier Company for linearity, signal-to-noise characteristics, gain, and saturation recovery time. This paper describes experimental setup for detector comparison and results obtained. Furthermore, we discuss new amplifier design and suitability for highspeed infrared pyrometry in shock physics experiments.

11 Figures and Tables

Cite this paper

@inproceedings{Young2005EvaluationAC, title={Evaluation and comparison of three IR detectors and three amplifier designs for a new, high-speed IR pyrometer}, author={Joan A. Young and S. Borror and Andrew W. Obst and Jeremy R Payton and Achim Seifter}, year={2005} }