Eta Invariants and Regularized Determinants for Odd Dimensional Hyperbolic Manifolds with Cusps


We study eta invariants of Dirac operators and regularized determinants of Dirac Laplacians over hyperbolic manifolds with cusps. We follow Werner Müller (see [18], [19]) and use relative traces to define the eta function and the zeta function. We show regularities of eta and zeta functions at the origin so that we can define the eta invariant and the… (More)


  • Presentations referencing similar topics