Estimation of Fuel Cell Life Time Using Latent Variables in Regression Context


This paper describes a pattern recognition approach aiming to estimate fuel cell duration time from electrochemical impedance spectroscopy measurements. It consists in first extracting features from both real and imaginary parts of the impedance spectrum. A parametric model is considered in the case of the real part, whereas regression model with latent variables is used in the latter case. Then, a linear regression model using different subsets of extracted features is used for the estimation of fuel cell time duration. The performances of the proposed approach are evaluated on experimental data set to show its feasibility. This could lead to interesting perspectives for predictive maintenance policy of fuel cell.

DOI: 10.1109/ICMLA.2009.35

8 Figures and Tables

Cite this paper

@article{Onanena2009EstimationOF, title={Estimation of Fuel Cell Life Time Using Latent Variables in Regression Context}, author={Raissa Onanena and Faicel Chamroukhi and Latifa Oukhellou and Denis Candusso and Patrice Aknin and Daniel Hissel}, journal={2009 International Conference on Machine Learning and Applications}, year={2009}, pages={632-637} }