Essential self-adjointness for combinatorial Schrödinger operators III-Magnetic fields

@inproceedings{ABILA2010EssentialSF,
  title={Essential self-adjointness for combinatorial Schr{\"o}dinger operators III-Magnetic fields},
  author={ABILA and ORKI and - H and Amza},
  year={2010}
}
  • ABILA, ORKI, +1 author Amza
  • Published 2010
— We define the magnetic Schrödinger operator on an infinite graph by the data of a magnetic field, some weights on vertices and some weights on edges. We discuss essential self-adjointness of this operator for graphs of bounded degree. The main result is a discrete version of a result of two authors of the present paper. RÉSUMÉ. — On définit l’opérateur de Schrödinger avec champ magnétique sur un graphe infini par la donnée d’un champ magnétique, de poids sur les sommets et de poids sur les ar… CONTINUE READING

References

Publications referenced by this paper.
SHOWING 1-9 OF 9 REFERENCES

On confining potentials and essential selfadjointness for Schrödinger operators on bounded domains in Rn, Ann

  • Nenciu
  • Henri Poincaré,
  • 2009

O.) & Shubin (M.)

  • M Braverman, Milatovic
  • Russian Math. Surveys
  • 2002
1 Excerpt

) & Loss ( M . ) . — Fluxes , Laplacians , and Kasteleyn ’ s theorem

  • E. Lieb
  • — Linear operator II , Spectral Theory
  • 1971

Linear operator II, Spectral Theory

  • N Dunford, T SchwartzJ.
  • 1971