Essays on the theory of elliptic hypergeometric functions
@article{Spiridonov2008EssaysOT, title={Essays on the theory of elliptic hypergeometric functions}, author={Vyacheslav P. Spiridonov}, journal={Russian Mathematical Surveys}, year={2008}, volume={63}, pages={405-472} }
This is a brief survey of the main results of the theory of elliptic hypergeometric functions -- a new class of special functions of mathematical physics. A proof is given of the most general known univariate exact integration formula generalizing Euler's beta integral. It is called the elliptic beta integral. An elliptic analogue of the Gauss hypergeometric function is constructed together with the elliptic hypergeometric equation for it. Biorthogonality relations for this function and its…
155 Citations
Introduction to the Theory of Elliptic Hypergeometric Integrals
- Mathematics
- 2020
We give a brief account of the key properties of elliptic hypergeometric integrals—a relatively recently discovered top class of transcendental special functions of hypergeometric type. In…
Elliptic Hypergeometric Functions
- MathematicsLectures on Orthogonal Polynomials and Special Functions
- 2020
This is author's Habilitation Thesis (Dr. Sci. dissertation) submitted at the beginning of September 2004. It is written in Russian and is posted due to the continuing requests for the manuscript. …
Basic Hypergeometric Functions as Limits of Elliptic Hypergeometric Functions
- Mathematics
- 2009
We describe a uniform way of obtaining basic hypergeometric functions as limits of the elliptic beta integral. This description gives rise to the construction of a polytope with a different basic…
Elliptic Hypergeometric Laurent Biorthogonal Polynomials with a Dense Point Spectrum on the Unit Circle
- Mathematics
- 2009
Using the technique of the elliptic Frobenius determinant, we construct new elliptic solutions of theQD-algorithm. These solutions can be interpreted as elliptic solutions of the discrete-time Toda…
Elliptic Hypergeometry of Supersymmetric Dualities
- Mathematics
- 2011
We give a full list of known $${\mathcal{N}=1}$$ supersymmetric quantum field theories related by the Seiberg electric-magnetic duality conjectures for SU(N), SP(2N) and G2 gauge groups. Many of the…
A noncommutative weight-dependent generalization of the binomial theorem
- Mathematics
- 2011
A weight-dependent generalization of the binomial theorem for noncommuting variables is presented. This result extends the well-known binomial theorem for q-commuting variables by a generic weight…
Yang–Baxter equation, parameter permutations, and the elliptic beta integral
- Mathematics
- 2013
This paper presents a construction of an infinite-dimensional solution of the Yang–Baxter equation of rank 1 which is represented as an integral operator with an elliptic hypergeometric kernel acting…
An elliptic hypergeometric beta integral transformation
- Mathematics
- 2009
In this article we prove a new elliptic hypergeometric integral identity. It previously appeared (as a conjecture) in articles by Rains, and Spiridonov and Vartanov. Moreover it gives a different…
New Elliptic Solutions of the Yang–Baxter Equation
- MathematicsCommunications in Mathematical Physics
- 2016
We consider finite-dimensional reductions of an integral operator with the elliptic hypergeometric kernel describing the most general known solution of the Yang–Baxter equation with a rank 1 symmetry…
New Elliptic Solutions of the Yang–Baxter Equation
- Mathematics
- 2014
We consider finite-dimensional reductions of an integral operator with the elliptic hypergeometric kernel describing the most general known solution of the Yang–Baxter equation with a rank 1 symmetry…
References
SHOWING 1-10 OF 126 REFERENCES
Limits of elliptic hypergeometric integrals
- Mathematics
- 2006
Abstract
In Ann. Math., to appear, 2008, the author proved a number of multivariate elliptic hypergeometric integrals. The purpose of the present note is to explore more carefully the various…
Continuous biorthogonality of the elliptic hypergeometric function
- Mathematics
- 2008
We construct a family of continuous biorthogonal functions related to an elliptic analogue of the Gauss hypergeometric function. The key tools used for that are the elliptic beta integral and the…
Theta hypergeometric integrals
- Mathematics
- 2003
We define a general class of (multiple) integrals of hypergeometric type associated with the Jacobi theta functions. These integrals are related to theta hypergeometric series through the residue…
The Elliptic Gamma Function and SL(3, Z)⋉Z3
- Mathematics
- 2000
Abstract The elliptic gamma function is a generalization of the Euler gamma function and is associated to an elliptic curve. Its trigonometric and rational degenerations are the Jackson q-gamma…
Transformations of elliptic hypergeometric integrals
- Mathematics
- 2010
We prove a pair of transformations relating elliptic hypergeometric integrals of different dimensions, corresponding to the root systems BC_n and A_n; as a special case, we recover some integral…
Recurrences for elliptic hypergeometric integrals
- Mathematics
- 2005
In recent work (math.QA/0309252) on multivariate hypergeometric integrals, the author generalized a conjectural integral formula of van Diejen and Spiridonov to a ten parameter integral provably…
Modular Hypergeometric Residue Sums of Elliptic Selberg Integrals
- Mathematics
- 2001
It is shown that the residue expansion of an elliptic Selberg integral gives rise to an integral representation for a multiple modular hypergeometric series. A conjectural evaluation formula for the…
Elements of the theory of elliptic functions
- Mathematics
- 1990
General theorems about elliptic functions Modular functions The Weierstrass functions Theta functions The Jacobi functions Transformation of elliptic functions Additional facts about elliptic…
Elliptic hypergeometric functions and Calogero-Sutherland-type models
- Mathematics
- 2007
We consider an elliptic analogue of the Gauss hypergeometric function and two of its multivariate generalizations. We describe their relation to elliptic beta integrals, the exceptional Weyl group…
Elliptic polynomials orthogonal on the unit circle with a dense point spectrum
- Mathematics
- 2007
We introduce two explicit examples of polynomials orthogonal on the unit circle. Moments and the reflection coefficients are expressed in terms of the Jacobi elliptic functions. We find explicit…