Erratum: Tannakian Categories

@inproceedings{Deligne1982ErratumTC,
  title={Erratum: Tannakian Categories},
  author={Pierre Deligne and James S. Milne},
  year={1982}
}

On v-adic periods of t-motives

Fundamental group schemes for stratified sheaves

Local solutions to positive characteristic non-Archimedean differential equations

  • J. Santos
  • Mathematics
    Compositio Mathematica
  • 2007
Abstract In the complex domain, one can integrate (solve) holomorphic ordinary differential equations (ODEs) near a non-singular point. We study the existence of solutions in the case of a positive

Automorphic vector bundles on connected Shimura varieties

Introduction 0. Review of terminology concerning Shimura varieties 1. The Taniyama group, the period torsor, and conjugates of Shimura varieties 2. The compact dual symmetric Hermitian space and its

A Tannakian Category and a Horizontal Equidistribution Conjecture for Exponential Sums

We construct a Tannakian category of perverse sheaves on the additive group over the integers, with sheaf convolution as the tensor operation. A class of numbertheoretic equidistribution problems,

On symmetric fusion categories in positive characteristic

We propose a conjectural extension in the positive characteristic case of well known Deligne’s theorem on the existence of super fiber functors. We prove our conjecture in the special case of

Higgs bundles and fundamental group schemes

Abstract Relying on a notion of “numerical effectiveness” for Higgs bundles, we show that the category of “numerically flat” Higgs vector bundles on a smooth projective variety X is a Tannakian

References

SHOWING 1-10 OF 10 REFERENCES

Categories for the Working Mathematician

I. Categories, Functors and Natural Transformations.- 1. Axioms for Categories.- 2. Categories.- 3. Functors.- 4. Natural Transformations.- 5. Monics, Epis, and Zeros.- 6. Foundations.- 7. Large

Introduction to Lie Algebras and Representation Theory

Preface.- Basic Concepts.- Semisimple Lie Algebras.- Root Systems.- Isomorphism and Conjugacy Theorems.- Existence Theorem.- Representation Theory.- Chevalley Algebras and Groups.- References.-

Resolution Of Singularities Of Embedded Algebraic Surfaces

0 Introduction.- 1. Local Theory.- 1 Terminology and preliminaries.- 2 Resolvers and principalizers.- 3 Dominant character of a normal sequence.- 4 Unramified local extensions.- 5 Main results.- 2.

Introduction to Affine Group Schemes

I The Basic Subject Matter.- 1 Affine Group Schemes.- 1.1 What We Are Talking About.- 1.2 Representable Functors.- 1.3 Natural Maps and Yoneda's Lemma.- 1.4 Hopf Algebras.- 1.5 Translating from

Differential analysis on complex manifolds

* Presents a concise introduction to the basics of analysis and geometry on compact complex manifolds * Provides tools which are the building blocks of many mathematical developments over the past

On the representations of the fundamental group

© Foundation Compositio Mathematica, 1976, tous droits réservés. L’accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l’accord avec les conditions

La conjecture de Weil pour les surfacesK3

1. Enonc6 du th~or~me Soient Fq un corps ~t q ~l~ments, Fq une cl6ture alg6brique de Fq, r la substitution de Frobenius xv-~x q et F= tp -1 le << Frobenius g6om6trique >>. Soit X un sch6ma (s6par6 de