Ergodicity and mixing of non‐commuting epimorphisms
@article{Bergelson2005ErgodicityAM, title={Ergodicity and mixing of non‐commuting epimorphisms}, author={Vitaly Bergelson and Alexander Gorodnik}, journal={Proceedings of the London Mathematical Society}, year={2005}, volume={95} }
We study mixing properties of epimorphisms of a compact connected finite‐dimensional abelian group X. In particular, we show that a set F, with |F| > dim X, of epimorphisms of X is mixing if and only if every subset of F of cardinality (dim X) + 1 is mixing. We also construct examples of free non‐abelian groups of automorphisms of tori which are mixing, but not mixing of order 3, and show that, under some irreducibility assumptions, ergodic groups of automorphisms contain mixing subgroups and…
10 Citations
Distal actions and ergodic actions on compact groups
- Mathematics
- 2009
Let K be a compact metrizable group and Γ be a group of automorphisms of K. We first show that each α ∈ Γi s distal on K implies Γ itself is distal on K, a local to global correspondence pro- vided Γ…
On the existence of ergodic automorphisms in ergodic ℤd-actions on compact groups
- MathematicsErgodic Theory and Dynamical Systems
- 2009
Abstract Let K be a compact metrizable group and Γ be a finitely generated group of commuting automorphisms of K. We show that ergodicity of Γ implies Γ contains ergodic automorphisms if center of…
Compact Group Automorphisms, Addition Formulas and Fuglede-Kadison Determinants
- Mathematics
- 2010
For a countable amenable group \Gamma and an element f in the integral group ring Z\Gamma being invertible in the group von Neumann algebra of \Gamma, we show that the entropy of the shift action of…
GROUPS , AND EXPANSIVE ALGEBRAIC ACTIONS
- Mathematics
- 2011
We give algebraic characterizations for expansiveness of algebraic actions of countable groups. The notion of p-expansiveness is introduced for algebraic actions, and we show that for countable…
Actions of automorphism groups of Lie groups
- Mathematics
- 2017
This is an expository article on properties of actions on Lie groups by subgroups of their automorphism groups. After recalling various results on the structure of the automorphism groups, we discuss…
Homoclinic groups, IE groups, and expansive algebraic actions
- Mathematics
- 2011
We give algebraic characterizations for expansiveness of algebraic actions of countable groups. The notion of $$p$$p-expansiveness is introduced for algebraic actions, and we show that for countable…
Regularity of conjugacies of algebraic actions of Zariski-dense groups
- Mathematics
- 2008
Let $\alpha_0$ be an affine action of a discrete group $\Gamma$ on a compact homogeneous space $X$
and $\alpha_1$ a smooth action of $\Gamma$ on $X$ which is $C^1$-close to $\alpha_0$.
We show that…
Dynamical properties of commuting automorphisms 1 Graz Summer School 2007
- Physics
- 2007
others of dynamical properties of group automorphisms. I am grateful to Richard Miles for comments. One specific warning: the footnotes are not intended to make sense until after all the lectures –…
A new mean ergodic theorem for tori and recurrences
- MathematicsErgodic Theory and Dynamical Systems
- 2021
Let $X$ be a finite-dimensional connected compact abelian group equipped with the normalized Haar measure $\unicode[STIX]{x1D707}$ . We obtain the following mean ergodic theorem over ‘thin’ phase…
Appendix A : Measure Theory
- Mathematics
- 2014
Complete treatments of the results stated in this appendix may be found in any measure theory book; see for example Parthasarathy [281], Royden [321] or Kingman and Taylor [195]. A similar summary of…
References
SHOWING 1-10 OF 36 REFERENCES
Asymptotic geometry of non-mixing sequences
- MathematicsErgodic Theory and Dynamical Systems
- 2003
The exact order of mixing for zero-dimensional algebraic dynamical systems is not entirely understood. Here non-Archimedean norms in function fields of positive characteristic are used to exhibit an…
Ergodic semigroups of epimorphisms
- Mathematics
- 1985
The conditions for ergodicity of semigroups of epimorphisms of compact groups are studied. In certain cases ergodic semigroups are shown to contain small ergodic subsemigroups. Properties related to…
Higher order mixing and rigidity of algebraic actions on compact Abelian groups
- Mathematics
- 2003
Let Γ be a discrete group and fori=1,2; letαi be an action of Γ on a compact abelian groupXi by continuous automorphisms ofXi. We study measurable equivariant mapsf: (X1,α1)→(X2,α2), and prove a…
Joint ergodicity and mixing
- Mathematics
- 1985
The study of jointly ergodic measure preserving transformations of probability spaces, begun in [1], is continued, and notions of joint weak and strong mixing are introduced. Various properties of…
Mixing automorphisms of compact groups and a theorem of Schlickewei
- Mathematics
- 1993
SummaryWe prove that every mixing ℤd by automorphisms of a compact, connected, abelian group is mixing of all orders.
Propriétés Asymptotiques des Groupes Linéaires
- Mathematics
- 1997
Abstract. Let G be a reductive linear real Lie group and
$\Gamma$ be a Zariski dense subgroup. We study asymptotic properties of
$\Gamma$ through the set of logarithms of the radial components of…
Free Subgroups of Linear Groups
- Mathematics
- 2007
Note that from the definition immediately follows that the group G is a free group with free generators gi, i ∈ I. Indeed, let g = g1 i1 . . . g mk ik be any reduced word. Take p ∈ D0, then gp ∈ D±…
DYNAMICAL SYSTEMS OF ALGEBRAIC ORIGIN (Progress in Mathematics)
- Mathematics
- 1997
Ergodic theory studies group actions given by representations T :G!MPT(X ), where MPT(X ) is the group of invertible measure-preserving transformations of a probability space X. The basic problem is…
Multiple ergodic theorems
- Mathematics
- 1988
AbstractGiven measure preserving transformationsT1,T2,...,Ts of a probability space (X,B, μ) we are interested in the asymptotic behaviour of ergodic averages of the form
$$\frac{1}{N}\sum\limits_{n…
Dynamical Systems of Algebraic Origin
- Biology
- 1995
This chapter discusses group actions by automorphisms fo compact groups, which are actions on compact abelian groups and the consequences of these actions on entropy.