Ergänzung zu einer Arbeit von Hellmuth Kneser über den Fundamentalsatz der Algebra
@article{Kneser1981ErgnzungZE, title={Erg{\"a}nzung zu einer Arbeit von Hellmuth Kneser {\"u}ber den Fundamentalsatz der Algebra}, author={Martin Von Kneser}, journal={Mathematische Zeitschrift}, year={1981}, volume={177}, pages={285-287} }
18 Citations
Der Fundamentalsatz der Algebra
- PhysicsElementare Galois-Theorie
- 2020
Die Polynomgleichung \(X^2 + 1 = 0\) besitzt im Zahlbereich der reellen Zahlen keine Losung, wohl aber im Bereich der sogenannten komplexen Zahlen. In diesem Kapitel fuhren wir die komplexen Zahlen…
Analysis of Kneser's Root Finding Algorithm for Polynomials in a Constructive Setting
- Computer Science
- 2018
This Bachelor thesis reproduces the proof of the Kneser Algorithm which is used to find roots of nonconstant polynomials as well as providing an analysis of the algorithm in a constructive setting.…
The Fundamental Theorem of Algebra
- Mathematics
- 2015
The Fundamental Theorem of Algebra (stated below) provides an ideal case study for illustrating the roles of alternative proofs in mathematical practice. Like the Pythagorean Theorem, the Fundamental…
Mobile History of Algebraic Equations 0 : The Visions
- Computer Science
- 2014
Timetable I • 1799 Fundamental Theorem of Algebra: Each (non-constant) algebraic equation has a (complex number) solution. Proved in the celebrated thesis of C.F. Gaus . • 1828 Invited by Alexander…
Newton's method and the Computational Complexity of the Fundamental Theorem of Algebra
- MathematicsElectron. Notes Theor. Comput. Sci.
- 2008
Ììì Ððððööö Ööö Blockiný Óó Øøø Ì Ôöó Blockinø Ààöññò Ùúö׸êêòòý Èóððð Blockin¸ Öööö Ïïïïïïï¸ââò Ûòòòùöö Íòòúö××øý Óó Aeaeaeññññò
- 2007
Fubinito (Immediately) Implies FTA
- MathematicsAm. Math. Mon.
- 2006
Example 2. Given a semiregular octagon AxA^^A^AsA^AqA^, we consider its en veloping quadrilaterals BXB2B3B4 and CXC2C3C4 determined by the lines containing the sides AXA2, A3A4, A5A6, A7AS, and A2A3,…
On the Fundamental Theorem of Algebra
- Mathematics, PhilosophyAm. Math. Mon.
- 2006
One of the simplest proofs that every nontrivial polynomial P has a zero goes as follows. Observe that |P(z)| → ∞ as |z| → ∞, so we may find an R > 0 with |P(z)| > |P(0)| for all |z| ≥ R. Since any…
A Large-Scale Experiment in Executing Extracted Programs
- Computer Science, MathematicsCalculemus
- 2005