# Equivariant differential characters and Chern–Simons bundles

@article{Perez2019EquivariantDC, title={Equivariant differential characters and Chern–Simons bundles}, author={Roberto Ferreiro P'erez}, journal={Algebraic \& Geometric Topology}, year={2019} }

We construct Chern-Simons bundles as $\mathrm{Aut}^{+}P$-equivariant $U(1)$ -bundles with connection over the space of connections $\mathcal{A}_{P}$ on a principal $G$-bundle $P\rightarrow M$. We show that the Chern-Simons bundles are determined up to an isomorphisms by means of its equivariant holonomy. The space of equivariant holonomies is shown to coincide with the space of equivariant differential characteres of second order. Furthermore, we prove that the Chern-Simons theory provides, in…

## References

SHOWING 1-10 OF 36 REFERENCES

### Equivariant prequantization bundles on the space of connections and characteristic classes

- Mathematics
- 2017

We show how characteristic classes determine equivariant prequantization bundles over the space of connections on a principal bundle. These bundles are shown to generalize the Chern–Simons line…

### On the geometrical interpretation of locality in anomaly cancellation

- GeologyJournal of Geometry and Physics
- 2018

### Equivariant prequantization bundles on the space of connections and characteristic classes

- Mathematics
- 2018

We show how characteristic classes determine equivariant prequantization bundles over the space of connections on a principal bundle. These bundles are shown to generalize the Chern–Simons line…

### The evaluation map in field theory, sigma-models and strings—II

- Mathematics
- 1987

In this paper, we examine specifically the rôle of the evaluation map in sigma-models and strings. We discuss the difference between sigma-models and field theory, as far as anomaly cancellation is…

### Determinants, torsion, and strings

- Mathematics
- 1986

We apply the results of [BF1, BF2] on determinants of Dirac operators to String Theory. For the bosonic string we recover the “holomorphic factorization” of Belavin and Knizhik. Witten's global…

### Some comments on Chern-Simons gauge theory

- Mathematics
- 1989

Following M. F. Atiyah and R. Bott [AB] and E. Witten [W], we consider the space of flat connections on the trivialSU(2) bundle over a surfaceM, modulo the space of gauge transformations. We describe…