# Equivariant Matrix Factorizations and Hamiltonian reduction

@article{Arkhipov2015EquivariantMF, title={Equivariant Matrix Factorizations and Hamiltonian reduction}, author={Sergey Arkhipov and Tina Kanstrup}, journal={arXiv: Representation Theory}, year={2015} }

Let $X$ be a smooth scheme with an action of an algebraic group $G$. We establish an equivalence of two categories related to the corresponding moment map $\mu : T^*X \to Lie(G)^*$ - the derived category of G-equivariant coherent sheaves on the derived fiber $\mu^{-1}(0)$ and the derived category of $G$-equivariant matrix factorizations on $T^*X \times Lie(G)$ with potential given by $\mu$.

#### 5 Citations

Braid group actions on matrix factorizations

- Mathematics
- 2015

Let $X$ be a smooth scheme with an action of a reductive algebraic group $G$ over an algebraically closed field $k$ of characteristic zero. We construct an action of the extended affine Braid group… Expand

Equivariant sheaves on loop spaces

- Mathematics
- 2020

Let $X$ be an affine, smooth, and Noetherian scheme over $\mathbb{C}$ acted on by an affine algebraic group $G$. Applying the technique developed in Arkhipov and Orsted (2018a, 2018b), we define a… Expand

Soergel bimodules and matrix factorizations.

- Mathematics, Physics
- 2020

We establish an isomorphism between the Khovanov-Rozansky triply graded link homology and the geometric triply graded homology due to the authors. Hence we provide an interpretation of the… Expand

Notes on Matrix Factorizations and Knot Homology

- Mathematics
- Lecture Notes in Mathematics
- 2019

These are the notes of the lectures delivered by the author at CIME in June 2018. The main purpose of the notes is to provide an overview of the techniques used in the construction of the triply… Expand

Categorical Chern character and braid groups.

- Mathematics
- 2018

To a braid $\beta\in Br_n$ we associate a complex of sheaves $S_\beta$ on $Hilb_n(C^2)$ such that the previously defined triply graded link homology of the closure $L(\beta)$ is isomorphic to the… Expand

#### References

SHOWING 1-10 OF 21 REFERENCES

Braid group actions on matrix factorizations

- Mathematics
- 2015

Let $X$ be a smooth scheme with an action of a reductive algebraic group $G$ over an algebraically closed field $k$ of characteristic zero. We construct an action of the extended affine Braid group… Expand

Linear Koszul duality

- Mathematics
- Compositio Mathematica
- 2009

Abstract In this paper we construct, for F1 and F2 subbundles of a vector bundle E, a ‘Koszul duality’ equivalence between derived categories of 𝔾m-equivariant coherent(dg-)sheaves on the derived… Expand

Quasi-coherent Hecke category and Demazure Descent

- Mathematics
- 2014

Let G be a reductive algebraic group with a Borel subgroup B. We define the quasi-coherent Hecke category for the pair (G,B). For any regular Noetherian G-scheme X we construct a monoidal action of… Expand

Matrix factorizations and singularity categories for stacks

- Mathematics
- 2010

We study matrix factorizations of a section W of a line bundle on an algebraic stack. We relate the corresponding derived category (the category of D-branes of type B in the Landau-Ginzburg model… Expand

Perverse Coherent Sheaves on Blow-ups at Codimension 2 Loci

- Mathematics
- International Mathematics Research Notices
- 2019

Let $f \colon X \to Y$ be the blow-up of a smooth projective variety $Y$ along its codimension two smooth closed subvariety. In this paper, we show that the moduli space of stable sheaves on $X$… Expand

Koszul duality and modular representations of semi-simple Lie algebras

- Mathematics
- 2008

In this paper we prove that if G is a connected, simply-connected, semi-simple algebraic group over an algebraically closed field of sufficiently large characteristic, then all the blocks of the… Expand

T-equivariant K-theory of generalized flag varieties.

- Mathematics, Medicine
- Proceedings of the National Academy of Sciences of the United States of America
- 1987

Many of the results of this paper are new in the finite case (i.e., G is a finite-dimensional semisimple group over C) as well. Expand

Perverse coherent sheaves (after Deligne)

- Mathematics
- 2000

This note is mostly an exposition of an unpublished result of Deligne, which introduces an analogue of perverse $t$-structure on the derived category of coherent sheaves on a Noetherian scheme with a… Expand

Affine braid group actions on derived categories of Springer resolutions

- Mathematics
- 2011

In this paper we construct and study an action of the affine braid group associated to a semi-simple algebraic group on derived categories of coherent sheaves on various varieties related to the… Expand

Representation theory and complex geometry

- Mathematics
- 1997

Preface.- Chapter 0. Introduction.- Chapter 1. Symplectic Geometry.- Chapter 2. Mosaic.- Chapter 3. Complex Semisimple Groups.- Chapter 4. Springer Theory.- Chapter 5. Equivariant K-Theory.- Chapter… Expand