Enumerative applications of a decomposition for graphs and digraphs

@article{Gessel1995EnumerativeAO,
  title={Enumerative applications of a decomposition for graphs and digraphs},
  author={Ira M. Gessel},
  journal={Discrete Mathematics},
  year={1995},
  volume={139},
  pages={257-271}
}
A simple decomposition for graphs yields generating functions for counting graphs by edges and connected components. A change of variables gives a new interpretation to the Tutte polynomial of the complete graph involving inversions of trees. The relation between the Tutte polynomial of the complete graph and the inversion enumerator for trees is generalized to the Tutte polynomial of an arbitrary graph. When applied to digraphs, the decomposition yields formulas for counting digraphs and… CONTINUE READING
Highly Cited
This paper has 35 citations. REVIEW CITATIONS

From This Paper

Figures, tables, and topics from this paper.

References

Publications referenced by this paper.
Showing 1-10 of 14 references

A noncommutative generalization and q-analog of the Lagrange inversion formula

I. Gessel
Trans. Amer. Math. Soc • 1980
View 4 Excerpts
Highly Influenced

The Tutte polynomial and its applications, Matroid Applications, ed

T. Brylawski, J. Oxley
N. White. Volume 40 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, • 1991
View 2 Excerpts

The homology and shellability of matroids and geometric lattices, Matroid Applications, ed

A. Björner
N. White. Volume 40 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, • 1991
View 2 Excerpts

Methoden der Anzahlbestimmung für einege Klassen von Graphen, Bayreuther mathematische Schriften, no

P. Leroux
26, • 1988

On external activity and inversions in trees

J. S. Beissinger
J. Combin. Theory Ser. B • 1982
View 1 Excerpt

Une famille du polynômes ayant plusieurs propriétés énumératives

G. Kreweras
Periodica Math. Hungarica • 1980
View 1 Excerpt

Algebraic Graph Theory

N. Biggs
1974
View 2 Excerpts

La série génératrice exponentielle dans les problèmes d’énumération

D. Foata
Presses de l’Université de Montréal, • 1974