# Entangling power of symmetric two-qubit quantum gates

@inproceedings{Morachis2021EntanglingPO, title={Entangling power of symmetric two-qubit quantum gates}, author={D. Morachis and Jes'us A. Maytorena}, year={2021} }

The capacity of a quantum gate to produce entangled states on a bipartite system is quantified in terms of the entangling power. This quantity is defined as the average of the linear entropy of entanglement of the states produced after applying a quantum gate over the whole set of separable states. Here we focus on symmetric two-qubit quantum gates, acting on the symmetric two-qubit space, and calculate the entangling power in terms of the appropriate local-invariant. A geometric description of… Expand

#### References

SHOWING 1-10 OF 25 REFERENCES

An Introduction to Tensors and Group Theory for Physicists

- Mathematics
- 2011

Part I Linear Algebra and Tensors.- A Quick Introduction to Tensors.- Vector Spaces.- Tensors.- Part II Group Theory.- Groups, Lie Groups, and Lie Algebras.- Basic Representation Theory.- The… Expand

Lie Groups

- Nature
- 1970

Lectures on Lie GroupsBy J. Frank Adams. (Mathematics Lecture Note Series.) Pp. xii + 182. (W. A. Benjamin: New York and Amsterdam, 1969.) n.p.

and Arvind

- Journal of Physics B: Atomic, Molecular and Optical Physics 51, 045505
- 2018

Phys

- Rev. A 67, 042313
- 2003

Phys

- Rev. A 94, 022123
- 2016

Am

- J. Phys. 81, 267
- 2013

Phys

- Rev. A 74, 052105
- 2006

Phys

- Rev. B 97, 195310
- 2018

Phys

- Rev. A 98, 043414
- 2018