Corpus ID: 209444815

Entanglement compression in scale space: from the multiscale entanglement renormalization ansatz to matrix product operators

@article{Acoleyen2019EntanglementCI,
  title={Entanglement compression in scale space: from the multiscale entanglement renormalization ansatz to matrix product operators},
  author={Karel Van Acoleyen and Andrew Hallam and Matthias Bal and Markus Hauru and Jutho Haegeman and Frank Verstraete},
  journal={arXiv: Strongly Correlated Electrons},
  year={2019}
}
  • Karel Van Acoleyen, Andrew Hallam, +3 authors Frank Verstraete
  • Published 2019
  • Physics
  • arXiv: Strongly Correlated Electrons
  • The multiscale entanglement renormalization ansatz (MERA) provides a constructive algorithm for realizing wavefunctions that are inherently scale invariant. Unlike conformally invariant partition functions however, the finite bond dimension $\chi$ of the MERA provides a cut-off in the fields that can be realized. In this letter, we demonstrate that this cut-off is equivalent to the one obtained when approximating a thermal state of a critical Hamiltonian with a matrix product operator (MPO) of… CONTINUE READING

    Figures from this paper.

    References

    Publications referenced by this paper.
    SHOWING 1-10 OF 31 REFERENCES

    S

    VIEW 2 EXCERPTS

    T

    Advances in Physics 57

    • F. Verstraete, V. Murg, J. I. Cirac
    • 143
    • 2008
    VIEW 5 EXCERPTS
    HIGHLY INFLUENTIAL

    Journal of Physics A: Mathematical and Theoretical 42

    • J. I. Cirac, F. Verstraete
    • 504004
    • 2009
    VIEW 5 EXCERPTS
    HIGHLY INFLUENTIAL

    A scaling hypothesis for matrix product states , ” ( 2019 ) , arXiv : 1907 . 08603 [ cond - mat . stat - mech ] . [ 11 ] G . Vidal

    • J. Haegeman, K. Van Acoleyen, F. Verstraete
    • Phys . Rev . Lett . Phys . Rev . Lett .

    I and J

    VIEW 1 EXCERPT