Engineering Three-Dimensional Moiré Flat Bands

@article{Xian2021EngineeringTM,
  title={Engineering Three-Dimensional Moir{\'e} Flat Bands},
  author={Lede Xian and Ammon Fischer and M. Claassen and Jin Zhang and {\'A}ngel Rubio and Dante M. Kennes},
  journal={Nano Letters},
  year={2021},
  volume={21},
  pages={7519 - 7526}
}
Twisting two adjacent layers of van der Waals materials with respect to each other can lead to flat two-dimensional electronic bands which enables a wealth of physical phenomena. Here, we generalize this concept of so-called moiré flat bands to engineer flat bands in all three spatial dimensions controlled by the twist angle. The basic concept is to stack the material such that the large spatial moiré interference patterns are spatially shifted from one twisted layer to the next. We exemplify… 

Figures and Tables from this paper

Controllable Edge Epitaxy of Helical GeSe/GeS Heterostructures.
Emerging twistronics based on van der Waals (vdWs) materials has attracted great interest in condensed matter physics. Recently, more neoteric three-dimensional (3D) architectures with interlayer
Moiré engineering of spin–orbit coupling in twisted platinum diselenide
We study the electronic structure and correlated phases of twisted bilayers of platinum diselenide using large-scale ab initio simulations combined with the functional renormalization group. PtSe2 is
Twisted multilayer nodal superconductors
Twisted bilayers of nodal superconductors were recently proposed as a promising platform to host superconducting phases that spontaneously break time-reversal symmetry. Here we extend this analysis
A tunable bilayer Hubbard model in twisted WSe2
Moiré materials with flat electronic bands provide a highly controllable quantum system for studies of strong-correlation physics and topology. In particular, angle-aligned heterobilayers of
A New Era of Quantum Materials Mastery and Quantum Simulators In and Out of Equilibrium
We provide a perspective on the burgeoning field of controlling quantum materials at will and its potential for quantum simulations in and out equilibrium. After briefly outlining a selection of key

References

SHOWING 1-10 OF 110 REFERENCES
Correlated insulator behaviour at half-filling in magic-angle graphene superlattices
TLDR
It is shown experimentally that when this angle is close to the ‘magic’ angle the electronic band structure near zero Fermi energy becomes flat, owing to strong interlayer coupling, and these flat bands exhibit insulating states at half-filling, which are not expected in the absence of correlations between electrons.
Hubbard Model Physics in Transition Metal Dichalcogenide Moiré Bands.
TLDR
It is theoretically shown that isolated flat moiré bands described by generalized triangular lattice Hubbard models are present in twisted transition metal dichalcogenide heterobilayers.
Multi-flat bands and strong correlations in Twisted Bilayer Boron Nitride
In a groundbreaking experimental advance it was recently shown that by stacking two sheets of graphene atop of each other at a twist angle close to one of the so called "magic angles", an effective
Realization of nearly dispersionless bands with strong orbital anisotropy from destructive interference in twisted bilayer MoS2
Recently, the twist angle between adjacent sheets of stacked van der Waals materials emerged as a new knob to engineer correlated states of matter in two-dimensional heterostructures in a controlled
Charge-polarized interfacial superlattices in marginally twisted hexagonal boron nitride
TLDR
Moiré superlattices generated by twisted insulating crystals of hexagonal boron nitride are shown to have a ferroelectric-like character, attributed to strain-induced polarized dipoles formed by pairs of interfacial bor on and nitrogen atoms that create bilayer-thick ferro electric domains.
Flat band in twisted bilayer Bravais lattices
Band engineering in twisted bilayers of the five generic two-dimensional Bravais networks is demonstrated. We first derive symmetry-based constraints on the interlayer coupling, which helps us to
Noncollinear phases in moiré magnets
TLDR
A general framework to study moiré structures of two-dimensional Van der Waals magnets using continuum field theory is introduced and eliminates quasiperiodicity and allows a full understanding of magnetic structures and their excitations.
Moiré bands in twisted double-layer graphene
TLDR
This work addresses the electronic structure of a twisted two-layer graphene system, showing that in its continuum Dirac model the moiré pattern periodicity leads to moirÉ Bloch bands.
Universal moiré nematic phase in twisted graphitic systems
Graphene moire superlattices display electronic flat bands. At integer fillings of these flat bands, energy gaps due to strong electron-electron interactions are generally observed. However, the
Superconductivity and strong correlations in moiré flat bands
Strongly correlated systems can give rise to spectacular phenomenology, from high-temperature superconductivity to the emergence of states of matter characterized by long-range quantum entanglement.
...
...