Electroviscous cylinder-wall interactions.


A theoretical analysis is presented to determine the forces of interaction between an electrically charged cylindrical particle and a charged plane boundary wall when the particle translates parallel to the wall and rotates around its axis in a symmetric electrolyte solution at rest. The electroviscous effects, arising from the coupling between the electrical and hydrodynamic equations, are determined as a solution of three partial differential equations, derived from R.G. Cox's general theory [J. Fluid Mech. 338 (1997) 1], for electroviscous ion concentration, electroviscous potential, and electroviscous flow field. It is assumed a priori that the double layer thickness surrounding each charged surface is much smaller than the length scale of the problem. Using the matched asymptotic expansion technique, the electroviscous forces experienced by the cylinder are explicitly determined analytically for small particle-wall distances for low and intermediate Peclet numbers. It is found that the tangential force usually increases the drag above the purely hydrodynamic drag, although for certain conditions the drag can be reduced. Similarly the normal force is usually repulsive, i.e., it is an electrokinetic lift force, but under certain conditions the normal force can be attractive.

Cite this paper

@article{Tabatabaei2006ElectroviscousCI, title={Electroviscous cylinder-wall interactions.}, author={Seyed Mohammad Fakhr Tabatabaei and Theo G M van de ven and Alejandro D. Rey}, journal={Journal of colloid and interface science}, year={2006}, volume={295 2}, pages={504-19} }