# Eigenvalues of Killing Tensors and Separable Webs on Riemannian and Pseudo-Riemannian Manifolds ?

@article{Chanu2007EigenvaluesOK, title={Eigenvalues of Killing Tensors and Separable Webs on Riemannian and Pseudo-Riemannian Manifolds ?}, author={Claudia M. Chanu and Giovanni Rastelli}, journal={Symmetry Integrability and Geometry-methods and Applications}, year={2007}, volume={3}, pages={021} }

Given a n-dimensional Riemannian manifold of arbitrary signature, we illustrate an algebraic method for constructing the coordinate webs separating the geodesic Hamilton- Jacobi equation by means of the eigenvalues of m n Killing two-tensors. Moreover, from the analysis of the eigenvalues, information about the possible symmetries of the web folia- tions arises. Three cases are examined: the orthogonal separation, the general separation, including non-orthogonal and isotropic coordinates, and…

## 9 Citations

Complex variables for separation of the Hamilton-Jacobi equation on real pseudo-Riemannian manifolds

- Mathematics
- 2006

In this paper the geometric theory of separation of variables for the time-independent Hamilton-Jacobi equation is extended to include the case of complex eigenvalues of a Killing tensor on…

Equivalence problem for the orthogonal separable webs in 3-dimensional hyperbolic space

- Mathematics
- 2017

The equivalence problem for the orthogonal separable coordinate webs determined by Killing two-tensors defined in hyperbolic 3-space is solved within the framework of the invariant theory of Killing…

Special Symmetric Two-tensors, Equivalent Dynamical Systems, Cofactor and Bi-cofactor Systems

- Mathematics
- 2005

A general analysis of special classes of symmetric two-tensor on Riemannian manifolds is provided. These tensors arise in connection with special topics in differential geometry and analytical…

Invariant classification of the rotationally symmetric R-separable webs for the Laplace equation in Euclidean space

- Mathematics
- 2008

An invariant characterization of the rotationally symmetric R-separable webs for the Laplace equation in Euclidean space is given in terms of invariants and covariants of a real binary quartic…

Orthogonal Separation of the Hamilton-Jacobi Equation on Spaces of Constant Curvature

- Mathematics
- 2016

We review the theory of orthogonal separation of variables of the Hamilton-Jacobi equation on spaces of constant curvature, highlighting key contributions to the theory by Benenti. This theory…

Complex variables for separation of Hamilton-Jacobi equation on three-dimensional Minkowski space

- Mathematics
- 2006

The real coordinates separating geodesic Hamilton-Jacobi equation on three-dimensional Minkowski space in several cases cannot be defined in the whole space. We show through an example how to…

Separability and Symmetry Operators for Painlevé Metrics and their Conformal Deformations

- MathematicsSymmetry, Integrability and Geometry: Methods and Applications
- 2019

Painleve metrics are a class of Riemannian metrics which generalize the well-known separable metrics of Stackel to the case in which the additive separation of variables for the Hamilton-Jacobi…

Block-separation of variables for natural Hamiltonians

- Mathematics
- 2018

We study twisted products H = αHr of natural autonomous Hamiltonians Hr, each one depending on a separate set, called here separate r-block, of variables. We show that, when the twist functions α are…

Block-Separation of Variables: a Form of Partial Separation for Natural Hamiltonians

- MathematicsSymmetry, Integrability and Geometry: Methods and Applications
- 2019

We study twisted products $H=\alpha^rH_r$ of natural autonomous Hamiltonians $H_r$, each one depending on a separate set, called here separate $r$-block, of variables. We show that, when the twist…

## References

SHOWING 1-10 OF 30 REFERENCES

Killing Tensors and Variable Separation for Hamilton-Jacobi and Helmholtz Equations

- Mathematics
- 1980

Every separable coordinate system for the Hamilton-Jacobi equation on a Riemannian manifold $V_n$ corresponds to a family of $n-1$ Killing tensors in involution, but the converse is false. For…

Conformal Killing Tensors and Variable Separation for Hamilton–Jacobi Equations

- Mathematics
- 1983

Every separable coordinate system for the Hamilton–Jacobi equation $g^{ij} W_i W_j = 0$ corresponds to a family of $n - 1$ conformal Killing tensors in involution, but the converse is false. For…

Separable bi-Hamiltonian systems with quadratic in momenta first integrals

- Mathematics
- 2003

Geometric separability theory of Gel'fand-Zakharevich bi-Hamiltonian systems on Riemannian manifolds is reviewed and developed. Particular attention is paid to the separability of systems generated…

Invariant classification of the rotationally symmetric R-separable webs for the Laplace equation in Euclidean space

- Mathematics
- 2008

An invariant characterization of the rotationally symmetric R-separable webs for the Laplace equation in Euclidean space is given in terms of invariants and covariants of a real binary quartic…

Intrinsic characterization of the variable separation in the Hamilton–Jacobi equation

- Mathematics
- 1997

The nonorthogonal separation of variables in the Hamilton–Jacobi equation corresponding to a natural Hamiltonian H=12gijpipj+V, with a metric tensor of any signature, is intrinsically characterized…

Complex variables for separation of Hamilton-Jacobi equation on three-dimensional Minkowski space

- Mathematics
- 2006

The real coordinates separating geodesic Hamilton-Jacobi equation on three-dimensional Minkowski space in several cases cannot be defined in the whole space. We show through an example how to…

Variable-separation theory for the null Hamilton–Jacobi equation

- Mathematics
- 2005

The theory of the separation of variables for the null Hamilton–Jacobi equation H=0 is systematically revisited and based on Levi–Civita separability conditions with Lagrangian multipliers. The…

Remarks on the connection between the additive separation of the Hamilton–Jacobi equation and the multiplicative separation of the Schrödinger equation. I. The completeness and Robertson conditions

- Mathematics
- 2002

The fundamental elements of the variable separation theory are revisited, including the Eisenhart and Robertson theorems, Kalnins–Miller theory, and the intrinsic characterization of the separation…

Intrinsic characterisation of orthogonal R separation for Laplace equations

- Mathematics
- 1982

Gives a coordinate-free characterisation of R separation for the Laplace equation on a pseudo-Riemannian manifold in terms of commuting conformal symmetry operators. The coordinates can be computed…