Efficient maximum likelihood decoding of linear block codes using a trellis

@article{Wolf1978EfficientML,
  title={Efficient maximum likelihood decoding of linear block codes using a trellis},
  author={J. Wolf},
  journal={IEEE Trans. Inf. Theory},
  year={1978},
  volume={24},
  pages={76-80}
}
  • J. Wolf
  • Published 1978
  • Computer Science
  • IEEE Trans. Inf. Theory
It is shown that soft decision maximum likelihood decoding of any (n,k) linear block code over GF(q) can be accomplished using the Viterbi algorithm applied to a trellis with no more than q^{(n-k)} states. For cyclic codes, the trellis is periodic. When this technique is applied to the decoding of product codes, the number of states in the trellis can be much fewer than q^{n-k} . For a binary (n,n - 1) single parity check code, the Viterbi algorithm is equivalent to the Wagner decoding… Expand
574 Citations
Soft trellis-based decoder for linear block codes
  • 25
Minimal error-trellises for linear block codes
  • Meir Ariel, J. Snyders
  • Mathematics
  • Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252)
  • 1998
  • 1
Iterative maximum-likelihood trellis decoding for block codes
  • 11
The Viterbi decoding complexity of linear block codes
  • R. McEliece
  • Mathematics
  • Proceedings of 1994 IEEE International Symposium on Information Theory
  • 1994
  • 15
  • PDF
Efficient Maximum-Likelihood Soft-Decision Decoding of Linear Block Codes Using Algorithm A*
  • 42
Maximum likelihood soft decoding of binary block codes and decoders for the Golay codes
  • 125
Maximum-likelihood Soft-decision Decoding for Binary Linear Block Codes Based on Their Supercodes
  • PDF
Low-complexity decoding with the minimal function-equivalent trellis
  • Xiao-Hong Peng, P. Farrell
  • Computer Science
  • Proceedings of GLOBECOM'96. 1996 IEEE Global Telecommunications Conference
  • 1996
...
1
2
3
4
5
...

References

SHOWING 1-10 OF 14 REFERENCES
Class of algorithms for decoding block codes with channel measurement information
  • D. Chase
  • Mathematics, Computer Science
  • IEEE Trans. Inf. Theory
  • 1972
  • 996
  • PDF
Error bounds for convolutional codes and an asymptotically optimum decoding algorithm
  • A. Viterbi
  • Mathematics, Computer Science
  • IEEE Trans. Inf. Theory
  • 1967
  • 4,666
  • PDF
Algebraic Decoding of Block Codes over a q-ary Input, Q-ary Output Channel, Q>q
  • 4
  • PDF
An optimum symbol-by-symbol decoding rule for linear codes
  • 201
Optimal decoding of linear codes for minimizing symbol error rate (Corresp.)
  • 6,459
Decoding binary block codes on Q-ary output channels
  • E. Weldon
  • Computer Science
  • IEEE Trans. Inf. Theory
  • 1971
  • 47
Group codes for the Gaussian channel
  • 175
Generalized minimum distance decoding
  • G. Forney
  • Mathematics, Computer Science
  • IEEE Trans. Inf. Theory
  • 1966
  • 563
Decoding algorithm for error - correcting codes by use of analog weights
  • Electron . Commun . Japan
  • 1975
Decoding block codes on Q - ary output channels
  • IEEE Trans . Inform . Theory
  • 1971
...
1
2
...