Efficient algorithms for a constrained k-tree core problem in a tree network

@article{Wang2006EfficientAF,
title={Efficient algorithms for a constrained k-tree core problem in a tree network},
author={Biing-Feng Wang and Shietung Peng and Hong-Yi Yu and Shan-Chyun Ku},
journal={J. Algorithms},
year={2006},
volume={59},
pages={107-124}
}

Let T = (V ,E) be a free tree in which each vertex has a weight and each edge has a length. Let n = |V |. Given T and parameters k and l, a (k, l)-tree core is a subtree X of T with diameter l, having k leaves, which minimizes the sum of the weighted distances from all vertices in T to X. In this paper, two efficient algorithms are presented for finding a (k, l)-tree core of T . The first algorithm has O(n2) time complexity for the case that each edge has an arbitrary length. The second… CONTINUE READING