# Efficient L1-Norm Principal-Component Analysis via Bit Flipping

@article{Markopoulos2017EfficientLP, title={Efficient L1-Norm Principal-Component Analysis via Bit Flipping}, author={Panos P. Markopoulos and S. Kundu and Shubham Chamadia and D. Pados}, journal={IEEE Transactions on Signal Processing}, year={2017}, volume={65}, pages={4252-4264} }

It was shown recently that the <inline-formula><tex-math notation="LaTeX">$K$</tex-math></inline-formula> L1-norm principal components (L1-PCs) of a real-valued data matrix <inline-formula><tex-math notation="LaTeX">$\mathbf X \in \mathbb {R}^{D \times N}$</tex-math></inline-formula> (<inline-formula><tex-math notation="LaTeX">$N$</tex-math> </inline-formula> data samples of <inline-formula><tex-math notation="LaTeX">$D$</tex-math></inline-formula> dimensions) can be exactly calculated with… Expand

#### Figures, Tables, and Topics from this paper

#### 87 Citations

Grassmann Manifold Optimization for Fast $L_1$-Norm Principal Component Analysis

- Mathematics, Computer Science
- IEEE Signal Processing Letters
- 2019

The proposed Grassmann manifold optimization method is computationally more efficient and produces results with lower reprojection error than previous methods, relatively independent of dataset size and well suited for various big-data problems commonly encountered today. Expand

Reduced-Rank L1-Norm Principal-Component Analysis With Performance Guarantees

- Computer Science, Mathematics
- IEEE Transactions on Signal Processing
- 2021

The proposed method combines the denoising capabilities and low computation cost of standard PCA with the outlier-resistance of L1-PCA. Expand

GrIP-PCA: Grassmann Iterative P-Norm Principal Component Analysis

- Mathematics
- IEEE Open Journal of Signal Processing
- 2020

Principal component analysis is one of the most commonly used methods for dimensionality reduction in signal processing. However, the most commonly used PCA formulation is based on the… Expand

Revisiting L2,1-Norm Robustness With Vector Outlier Regularization

- Medicine, Computer Science
- IEEE Transactions on Neural Networks and Learning Systems
- 2020

A new vector outlier regularization (VOR) framework is proposed and an equivalent continuous formulation is proved, based on which it is proved that the <inline-formula> <tex-math notation="LaTeX">$L_{2,1}$ </tex- Math>-norm function is the limiting case of the proposed VOR function. Expand

Towards Robust Discriminative Projections Learning via Non-Greedy <inline-formula><tex-math notation="LaTeX">$\ell _{2,1}$</tex-math><alternatives><mml:math><mml:msub><mml:mi>ℓ</mml:mi><mml:mrow><mml:mn>2</mml:mn><mml:mo>,</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msub></mml:math><inline-graphic xl

- IEEE Transactions on Pattern Analysis and Machine Intelligence
- 2021

Linear Discriminant Analysis (LDA) is one of the most successful supervised dimensionality reduction methods and has been widely used in many real-world applications. However,… Expand

Differentially Private Robust Low-Rank Approximation

- Computer Science, Mathematics
- NeurIPS
- 2018

In this paper, we study the following robust low-rank matrix approximation problem: given a matrix $A \in \R^{n \times d}$, find a rank-$k$ matrix $B$, while satisfying differential privacy, such… Expand

Optimal sparse L1-norm principal-component analysis

- Mathematics, Computer Science
- 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
- 2017

We present an algorithm that computes exactly (optimally) the S-sparse (1≤S<D) maximum-L<inf>1</inf>-norm-projection principal component of a real-valued data matrix X ∈ ℝ<sup>D×N</sup> that contains… Expand

Novel Algorithms for Exact and Efficient L1-NORM-BASED Tucker2 Decomposition

- Computer Science
- 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
- 2018

An efficient (quadratic-cost/near-exact) algorithm that approximates the solution to rank-1 L1- TUCKER2 by means of a converging sequence of optimal single-bit flips is developed, accompanied by formal convergence proof and complexity analysis. Expand

Average Case Column Subset Selection for Entrywise 퓁1-Norm Loss

- Computer Science, Mathematics
- NeurIPS
- 2019

This is the first algorithm of any kind for achieving a $(1+\epsilon)-approximate column subset selection to the entrywise $\ell_1$-norm loss low rank approximation. Expand

Computational advances in sparse L1-norm principal-component analysis of multi-dimensional data

- Computer Science
- 2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)
- 2017

An efficient suboptimal algorithm of complexity O(N<sup>2</sup>(N + D) is presented and its strong resistance to faulty measurements/outliers in the data matrix is demonstrated. Expand

#### References

SHOWING 1-10 OF 68 REFERENCES

L1-Norm Principal-Component Analysis via Bit Flipping

- Mathematics, Computer Science
- 2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)
- 2016

L1-BF is presented: a novel, near-optimal algorithm that calculates the K L1-PCs of X with cost O (NDmin{N, D} + N2(K4 + DK2) + DNK3), comparable to that of standard (L2-norm) Principal-Component Analysis. Expand

Some Options for L1-subspace Signal Processing

- Computer Science, Mathematics
- ISWCS
- 2013

It is proved that the case of engineering interest of fixed dimension D and asymptotically large sample support N is not NP-hard and an optimal algorithm of complexity of complexity $O(N^D)$ is presented. Expand

Optimal Algorithms for L1-subspace Signal Processing

- Mathematics, Computer Science
- IEEE Transactions on Signal Processing
- 2014

This work starts with the computation of the L1 maximum-projection principal component of a data matrix containing N signal samples of dimension D and presents in explicit form an optimal algorithm of computational cost 2N for the case where the sample size is less than the fixed dimension. Expand

Fast computation of the L1-principal component of real-valued data

- Mathematics, Computer Science
- 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
- 2014

This paper presents for the first time in the literature a fast greedy single-bit-flipping conditionally optimal iterative algorithm for the computation of the L1 principal component with complexity O(N3) and demonstrates the effectiveness of the developed algorithm with applications to the general field of data dimensionality reduction and direction-of-arrival estimation. Expand

Fast parallel processing using GPU in computing L1-PCA bases

- Computer Science
- TENCON 2010 - 2010 IEEE Region 10 Conference
- 2010

This paper attempts to accelerate the computation of the L1-PCA bases using GPU by proposing a fast PCA-L1 algorithm providing identical bases in terms of theoretical approach, and decreased computational time roughly to a quarter. Expand

Efficient computation of robust low-rank matrix approximations in the presence of missing data using the L1 norm

- Computer Science, Mathematics
- 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
- 2010

This paper presents a method for calculating the low-rank factorization of a matrix which minimizes the L1 norm in the presence of missing data and shows that the proposed algorithm can be efficiently implemented using existing optimization software. Expand

Robust Principal Component Analysis with Non-Greedy l1-Norm Maximization

- Mathematics, Computer Science
- IJCAI
- 2011

Experimental results on real world datasets show that the nongreedy method always obtains much better solution than that of the greedy method, and then a robust principal component analysis with non-greedy l1-norm maximization is proposed. Expand

Improve robustness of sparse PCA by L1-norm maximization

- Computer Science
- Pattern Recognit.
- 2012

This paper proposes a new sparse PCA method that attempts to capture the maximal L"1-norm variance of the data, which is intrinsically less sensitive to noises and outliers. Expand

R1-PCA: rotational invariant L1-norm principal component analysis for robust subspace factorization

- Computer Science, Mathematics
- ICML
- 2006

Experiments on several real-life datasets show R1-PCA can effectively handle outliers and it is shown that L1-norm K-means leads to poor results while R2-K-MEans outperforms standard K-Means. Expand

A Pure L1-norm Principal Component Analysis.

- Medicine
- Computational statistics & data analysis
- 2013

Tests show that L1-PCA* is the indicated procedure in the presence of unbalanced outlier contamination and the application of this idea that fits data to subspaces of successively smaller dimension is presented. Expand