Effects of water content and chain length of n-alkane on the interaction enthalpy between the droplets in water/sodium bis(2-ethylhexyl)-sulfosuccinate/n-alkane microemulsions.

Abstract

The concentration-dependent enthalpies of mixing for water/sodium bis(2-ethylhexyl)-sulfosuccinate (AOT)/n-alkane microemulsions with different water contents ω0 and chain lengths n of n-alkane were determined by isothermal titration microcalorimetry (ITC) and flow-mixing microcalorimetry at 298.15 K and used to calculate the interaction enthalpies (-ΔH(C)) between the droplets. It was found that -ΔH(C) increased with ω0, and changed from negative to positive at about ω0 = 10. The investigation of the dependence of -ΔH(C) on n revealed that the values of -ΔH(C) were negative and had a minimum for ω0 = 5; while they were positive and had a maximum for ω0 = 15. These phenomena were discussed based on the competition of the overlapping contribution of the surfactant tails between two neighbouring droplets and the penetration contribution of the solvent molecules into the surfactant tails. These results indicated the important role of entropy in the stability of the microemulsion systems.

DOI: 10.1039/c5sm00319a

Cite this paper

@article{Fan2015EffectsOW, title={Effects of water content and chain length of n-alkane on the interaction enthalpy between the droplets in water/sodium bis(2-ethylhexyl)-sulfosuccinate/n-alkane microemulsions.}, author={Dashuang Fan and Peizhu Zheng and Yuanming Ma and Tianxiang Yin and Jihua Zhao and Weiguo Shen}, journal={Soft matter}, year={2015}, volume={11 14}, pages={2885-92} }