Effects of alcohols and anesthetics on recombinant voltage-gated Na+ channels.


Voltage-gated Na(+) channels (Na(+) channels) mediate the rising phase of action potentials in neurons and excitable cells. Nine subtypes of the alpha subunit (Na(v)1.1-Na(v)1.9) have been shown to form functional Na(+) channels to date. Recently, anesthetic concentrations of volatile anesthetics and ethanol were reported to inhibit Na(+) channel functions, but it is not known whether all subtypes are inhibited by anesthetics. To investigate possible subtype-specific effects of anesthetics on Na(+) channels, mRNA of Na(v)1.2, Na(v)1.4, Na(v)1.6, and Na(v)1.8 alpha subunit-encoded genes were injected individually or together with a beta subunit mRNA into Xenopus oocytes. Na(+) currents were recorded using the two-electrode voltage-clamp technique. Isoflurane, at clinically relevant concentrations, inhibited the currents produced by Na(v)1.2, Na(v)1.4, and Na(v)1.6 by approximately 10% at the holding potential of -90 mV and by approximately 30% at -60 mV, but it did not affect the Na(v)1.8-mediated current. An anesthetic fluorocyclobutane (1-chloro-1,2,2-trifluorocyclobutane) also inhibited the Na(v)1.2 channel, whereas the nonanesthetic fluorocyclobutane (1,2-dichlorohexafluorocyclobutane) had no effect. The perfluorinated heptanol [CF(3)(CF(2))(5)CH(2)OH], which produces anesthesia, inhibited the Na(v)1.2 channel like other alcohols tested (ethanol, heptanol, and CF(3)CH(2)OH), even though this compound does not affect GABA, glycine, alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid, or kainate receptors. In contrast, most intravenous anesthetics did not have significant effects on the Na(v)1.2 channel at clinically relevant concentrations although urethane inhibited. These results show that isoflurane inhibits the Na(+) channel functions except Na(v)1.8 in a voltage-dependent manner. These findings indicate that the Na(+) channel is a neuronal target for anesthetic action.

7 Figures and Tables


Citations per Year

63 Citations

Semantic Scholar estimates that this publication has 63 citations based on the available data.

See our FAQ for additional information.

Cite this paper

@article{Shiraishi2004EffectsOA, title={Effects of alcohols and anesthetics on recombinant voltage-gated Na+ channels.}, author={Munehiro Shiraishi and R. Adron Harris}, journal={The Journal of pharmacology and experimental therapeutics}, year={2004}, volume={309 3}, pages={987-94} }