Effects of Al(3+) and related metals on membrane phase state and hydration: correlation with lipid oxidation.


The aim of the present study was to further understand how changes in membrane organization can lead to higher rates of lipid oxidation. We previously demonstrated that Al(3+), Sc(3+), Ga(3+), Be(2+), Y(3+), and La(3+) promote lipid packing and lateral phase separation. Using the probe Laurdan, we evaluated in liposomes if the higher rigidity of the membrane caused by Al(3+) can alter membrane phase state and/or hydration, and the relation of this effect to Al(3+)-stimulated lipid oxidation. In liposomes of dimyristoyl phosphatidylcholine and dimyristoyl phosphatidylserine, Al(3+) (10-100 microM) induced phase coexistence and displacement of T(m). In contrast, in liposomes of brain phosphatidylcholine and brain phosphatidylserine, Al(3+) (10-200 microM) did not affect membrane phase state but increased Laurdan generalized polarization (GP = -0. 04 and 0.09 in the absence and presence of 200 microM Al(3+), respectively). Sc(3+), Ga(3+), Be(2+), Y(3+), and La(3+) also increased GP values, with an effect equivalent to a decrease in membrane temperature between 10 and 20 degrees C. GP values in the presence of the cations were significantly correlated (r(2) = 0.98, P < 0.001) with their capacity to stimulate Fe(2+)-initiated lipid oxidation. Metal-promoted membrane dehydration did not correlate with ability to enhance lipid oxidation, indicating that dehydration of the phospholipid polar headgroup is not a mechanism involved in cation-mediated enhancement of Fe(2+)-initiated lipid oxidation. Results indicate that changes in membrane phospholipid phase state favoring the displacement to gel state can facilitate the propagation of lipid oxidation.


Citations per Year

359 Citations

Semantic Scholar estimates that this publication has 359 citations based on the available data.

See our FAQ for additional information.

Cite this paper

@article{Verstraeten2000EffectsOA, title={Effects of Al(3+) and related metals on membrane phase state and hydration: correlation with lipid oxidation.}, author={Sandra V Verstraeten and Patricia I Oteiza}, journal={Archives of biochemistry and biophysics}, year={2000}, volume={375 2}, pages={340-6} }