Effect of phorbol myristate acetate on release of arachidonic acid and its metabolites in the osteoblastic MOB 3-4 cell line and its subclone, MOB 3-4-F2.

Abstract

We examined the effect of phorbol 12-myristate 13-acetate (PMA) on release of arachidonic acid (AA) and its metabolites in osteoblastic cells in an attempt to study mechanism of the regulation of phospholipase A2 (PLA2) activity. In the MOB 3-4-F2 cell line, a subclone of the clonal osteoblastic MOB 3-4 cell line, PMA (0.1-100 nM) changed its appearance and increased AA release in a dose- and time-dependent manner, whereas 4 alpha-phorbol 12,13-didecanoate (4 alpha-PDD) did not show a significant affect on the release. The addition of 1,2-bis(O-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA, greater than or equal to 1.5 mM), a Ca2+ chelator, almost completely inhibited the PMA-induced AA release without affecting the intrinsic AA release. Preincubation with staurosporine (5-20 nM), an inhibitor of protein kinase C (PKC), partially (approximately 60%) blocked the AA release. However, 30-min preincubation with H-7 (50-200 microM), an inhibitor of PKC, failed to block the AA release. PMA, thus, appeared to stimulate AA release partially by a staurosporine-sensitive mechanism, probably an activation of PKC, in an external Ca(2+)-dependent manner. On the other hand, MOB 3-4 cells responded to PMA with an increased AA release but not with a drastic change of its shape. Both staurosporine and BAPTA exerted similar inhibitory effects. Prolonged exposure (48 h) to PMA (0.1-10 nM) enhanced DNA synthesis of MOB 3-4-F2 cells, but not MOB 3-4 cells.(ABSTRACT TRUNCATED AT 250 WORDS)

Cite this paper

@article{Kawase1992EffectOP, title={Effect of phorbol myristate acetate on release of arachidonic acid and its metabolites in the osteoblastic MOB 3-4 cell line and its subclone, MOB 3-4-F2.}, author={Takeshi Kawase and Michiaki Orikasa and A M M Suzuki}, journal={Cellular signalling}, year={1992}, volume={4 1}, pages={51-9} }