Effect of ischemic preconditioning in skeletal muscle measured by functional magnetic resonance imaging and spectroscopy: a randomized crossover trial

Abstract

BACKGROUND Nuclear magnetic resonance (NMR) imaging and spectroscopy have been applied to assess skeletal muscle oxidative metabolism. Therefore, in-vivo NMR may enable the characterization of ischemia-reperfusion injury. The goal of this study was to evaluate whether NMR could detect the effects of ischemic preconditioning (IPC) in healthy subjects. METHODS Twenty-three participants were included in two randomized crossover protocols in which the effects of IPC were measured by NMR and muscle force assessments. Leg ischemia was administered for 20 minutes with or without a subsequent impaired reperfusion for 5 minutes (stenosis model). IPC was administered 4 or 48 hours prior to ischemia. Changes in 31phosphate NMR spectroscopy and blood oxygen level-dependent (BOLD) signals were recorded. 3-Tesla NMR data were compared to those obtained for isometric muscular strength. RESULTS The phosphocreatine (PCr) signal decreased robustly during ischemia and recovered rapidly during reperfusion. In contrast to PCr, the recovery of muscular strength was slow. During post-ischemic stenosis, PCr increased only slightly. The BOLD signal intensity decreased during ischemia, ischemic exercise and post-ischemic stenosis but increased during hyperemic reperfusion. IPC 4 hours prior to ischemia significantly increased the maximal PCr reperfusion signal and mitigated the peak BOLD signal during reperfusion. CONCLUSIONS Ischemic preconditioning positively influenced muscle metabolism during reperfusion; this resulted in an increase in PCr production and higher oxygen consumption, thereby mitigating the peak BOLD signal. In addition, an impairment of energy replenishment during the low-flow reperfusion was detected in this model. Thus, functional NMR is capable of characterizing changes in reperfusion and in therapeutic interventions in vivo. TRIAL REGISTRATION ClinicalTrials.gov: NCT00883467.

DOI: 10.1186/1532-429X-13-32

Extracted Key Phrases

8 Figures and Tables

02040201220132014201520162017
Citations per Year

87 Citations

Semantic Scholar estimates that this publication has 87 citations based on the available data.

See our FAQ for additional information.

Cite this paper

@inproceedings{Andreas2011EffectOI, title={Effect of ischemic preconditioning in skeletal muscle measured by functional magnetic resonance imaging and spectroscopy: a randomized crossover trial}, author={Martin Andreas and Albrecht Ingo Schmid and Mohammad Yahya Keilani and Daniel Doberer and Johann Bartko and Richard Crevenna and Ewald Moser and Michael Wolzt}, booktitle={Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance}, year={2011} }