Effect of an adenosine antagonist and an adenosine agonist on status entry and severity in a model of limbic status epilepticus.


Adenosine is an endogenous neuromodulator that suppresses excitatory neurotransmission. We postulated that adenosine-mediated mechanisms resist status epilepticus (SE) entry and limit SE severity. In the first experiment rats were given an adenosine agonist (2-chloroadenosine), an adenosine antagonist (aminophylline), or saline vehicle, prior to SE induction with pulsed-train current delivered to amygdala in successive 5-min current-on sessions. Saline-treated animals entered limbic SE, with predominantly exploratory behavior, after 6.0 +/- 0.9 current-on sessions. Aminophylline increased major convulsive activity during stimulation and resulted in entry into convulsive SE after only 2.1 +/- 0.1 sessions. 2-Chloroadenosine, in contrast, suppressed major convulsive activity during stimulation, and blocked (in 3/7) or delayed (4/7) SE entry, with successes requiring 12.8 +/- 0.9 stimulation sessions. In a second experiment, animals already in exploratory SE were administered a single injection of saline vehicle, aminophylline, or 2-chloroadenosine. Aminophylline converted exploratory SE into lethally severe convulsive SE. 2-Chloroadenosine suppressed SE behaviorally and electrographically, and protected recipients from the seizure-associated cerebral damage seen in saline-administered SE controls. These results support the hypothesis that endogenous adenosine mechanisms resist SE entry, modulate the severity of ongoing SE, and limit the anatomic spread of seizure activity.


Citations per Year

261 Citations

Semantic Scholar estimates that this publication has 261 citations based on the available data.

See our FAQ for additional information.

Cite this paper

@article{Handforth1994EffectOA, title={Effect of an adenosine antagonist and an adenosine agonist on status entry and severity in a model of limbic status epilepticus.}, author={Adrian Handforth and David M Treiman}, journal={Epilepsy research}, year={1994}, volume={18 1}, pages={29-42} }