Editorial: The Role of the Plasminogen Activating System in Neurobiology


The plasminogen activating system has been well-appreciated for its roles in fibrinolysis and metastatic cancer for over 30 years. These observations lead to the clinical development of the key plasminogen activators, namely urokinase (u-PA), and tissue-type plasminogen activator (t-PA) as thrombolytic agents, initially for myocardial infarction in the mid-1980's, and a decade later for use in patients with ischaemic stroke following the approval of tPA (Ninds, 1995). Similarly various attempts were made to modulate cell surface plasminogen activation in an effort to reduce metastatic spread with varying success, although various components of this system have become biomarkers for some malignancies (McMahon and Kwaan, 2015). While many laboratories continue to work in these classical areas, and with due reason, a growing list of publications dating from the early 1980's revealed that the main components of the plasminogen activating system were expressed in almost all cell types and were regulated by agonists linked to almost all signal transduction pathways identified (Medcalf, 2007). While these reports were consistent with a broadening role of the plasminogen activating system in physiology, other findings also from the early 1980's reported strong expression of components of the plasminogen activating system in the central nervous system (Krystosek and Seeds, 1981; Soreq and Miskin, 1981). While these were largely descriptive studies, and without any clear connection to conventional fibrinolysis or metastatic cancer, speculation arose as to the role of the plasminogen activating system in the CNS (Yepes and Lawrence, 2004), particularly given the fact that the normal brain is devoid of fibrin. A decade or so later, CNS focused reports of activity dependent expression of t-PA in the brain added substantial fuel to notion of a critical role for t-PA in normal brain function, with increases in t-PA gene expression in the CNS correlated with long term potentiation (Qian et al. Soon after, reports using t-PA deficient mice provided evidence for surprising neurotoxic effects of t-PA where t-PA, via plasmin was shown to be necessary to facilitate glutamate-mediated toxicity in vivo (Chen and Strickland, 1997). These reports were published at about the same time that t-PA was approved for therapeutic use in patients with ischemic stroke and raised concerns with the clinical use of t-PA given the fact t-PA administration in ischemic stroke was not risk-free. It soon became apparent that t-PA was influencing numerous other aspects of brain function including modulation of memory (Huang et al. Another landmark …

DOI: 10.3389/fncel.2016.00222

Extracted Key Phrases

Cite this paper

@inproceedings{Medcalf2016EditorialTR, title={Editorial: The Role of the Plasminogen Activating System in Neurobiology}, author={R L Medcalf and Daniel A Lawrence}, booktitle={Front. Cell. Neurosci.}, year={2016} }