EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR A STEKLOV PROBLEM INVOLVING THE P(X)-LAPLACE OPERATOR

@inproceedings{Amrouss2012EXISTENCEAM,
  title={EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR A STEKLOV PROBLEM INVOLVING THE P(X)-LAPLACE OPERATOR},
  author={A. R. El Amrouss},
  year={2012}
}
In this article we study the nonlinear Steklov boundary-value problem ∆p(x)u = |u|p(x)−2u in Ω, |∇u|p(x)−2 ∂u ∂ν = λf(x, u) on ∂Ω. Using the variational method, under appropriate assumptions on f , we obtain results on existence and multiplicity of solutions. 

From This Paper

Topics from this paper.

References

Publications referenced by this paper.
Showing 1-10 of 30 references

Rákosnik; On spaces Lp(x)(Ω) and W k,p(x)(Ω)

  • J. O. Kováčik
  • Czechoslovak Math. J
  • 1991
Highly Influential
2 Excerpts

Remarks on the existence of three solutions for the p(x)-Laplacian equations, Nonlinear Anal

  • C. Ji
  • 2012

Existence and multiplicity of solutions for a Neumann problem involving the p(x)-laplace operator

  • L. L. Wang, Y. H. Fan, W. G. Ge
  • Nonlinear .Anal
  • 2009
1 Excerpt

Existence and multiplicity of solutions for a general p ( x ) - laplacian Neumann problem

  • X. L. Fan, J. S. Shen, D. Zhao
  • Nonlinear . Anal .
  • 2009

Existence and multiplicity of solutions for a general p(x)-laplacian Neumann problem. Nonlinear

  • X. Ding, X. Shi
  • 2009
1 Excerpt

Nuortio; Overview of differential equations with non-standard growth

  • P. Harjulehto, P. Hästö, M. Út Van Lê
  • 2009
1 Excerpt

Dend; Eigenvalues of the p(x)-laplacian

  • S G.
  • Steklov problem, J. Math. Anal. appl
  • 2008
1 Excerpt