• Mathematics
  • Published 2012

EVANS FUNCTIONS AND BIFURCATIONS OF STANDING WAVE SOLUTIONS IN DELAYED SYNAPTICALLY COUPLED NEURONAL NETWORKS

@inproceedings{Zhang2012EVANSFA,
  title={EVANS FUNCTIONS AND BIFURCATIONS OF STANDING WAVE SOLUTIONS IN DELAYED SYNAPTICALLY COUPLED NEURONAL NETWORKS},
  author={Linghai Zhang},
  year={2012}
}
Consider the following nonlinear singularly perturbed system of integral differential equations &\frac{\partial u}{\partial t}+f(u)+w\\ =&(\alpha-au)\int^{\infty}_0\xi(c)\left[\int_{\mathbb R}K(x-y) H\left(u\left(y,t-\frac1c|x-y|\right)-\theta\right){\rm d}y\right]{\rm d}c\\ &+(\beta-bu)\int^{\infty}_0\eta(\tau)\left[\int_{\mathbb R}W(x-y)H\big(u(y,t-\tau)-\Theta\big){\rm d}y\right]{\rm d}\tau,\\ &\frac{\partial w}{\partial t}=\varepsilon[g(u)-w], and the scalar integral differential equation… CONTINUE READING