EEG Source Reconstruction in Male Nonsmokers after Nicotine Administration during the Resting State.

Abstract

Modern psychopharmacological research in humans focuses on how specific psychoactive molecules modulate oscillatory brain activity. We present state-of-the-art EEG methods applied in a resting-state drug study. Thirty healthy male nonsmokers were randomly allocated either to a nicotine group (14 subjects, 7 mg transdermal nicotine) or a placebo group (16 subjects). EEG activity was recorded in eyes-open (EO) and eyes-closed (EC) conditions before and after drug administration. A source reconstruction (minimum norm algorithm) analysis was conducted within a frequency range of 8.5-18.4 Hz subdivided into three different frequency bands. During EO, nicotine reduced the power of oscillatory activity in the 12.5- to 18.4-Hz frequency band in the left middle frontal gyrus. In contrast, in the EC condition, nicotine reduced the power in the 8.5- to 10.4-Hz frequency band in the superior frontal gyri and in the 10.5- to 12.4-Hz and 12.5- to 18.4-Hz frequency bands in the supplementary motor areas. In summary, nicotine reduced the power of the 12.5- to 18.4-Hz band in the left middle frontal gyrus during EO, and it reduced power from 8.5 to 18.4 Hz in a brain area spanning from the superior frontal gyri to the supplementary motor areas during EC. In conclusion, the results suggest that nicotine counteracts the phenomenon of anteriorization of α activity, hence potentially increasing the level of vigilance.

DOI: 10.1159/000445481

Cite this paper

@article{Ranzi2016EEGSR, title={EEG Source Reconstruction in Male Nonsmokers after Nicotine Administration during the Resting State.}, author={Paolo Ranzi and Christiane M. Thiel and Christoph S. Herrmann}, journal={Neuropsychobiology}, year={2016}, volume={73 4}, pages={191-200} }