# Dynamical Vector Fields on the Manifold of Quantum States

@article{Ciaglia2017DynamicalVF, title={Dynamical Vector Fields on the Manifold of Quantum States}, author={Florio M. Ciaglia and Fabio Di Cosmo and Alberto Ibort and Marco Laudato and Giuseppe Marmo}, journal={Open Syst. Inf. Dyn.}, year={2017}, volume={24}, pages={1740003:1-1740003:38} }

In this paper we shall consider the stratified manifold of quantum states and the vector fields which act on it. In particular, we show that the infinitesimal generator of the GKLS evolution is com...

## 17 Citations

Differential Geometry of Quantum States, Observables and Evolution

- PhysicsQuantum Physics and Geometry
- 2019

The geometrical description of Quantum Mechanics is reviewed and proposed as an alternative picture to the standard ones. The basic notions of observables, states, evolution and composition of…

Kraus operators and symmetric groups

- Mathematics
- 2021

In the contest of open quantum systems, we study a class of Kraus operators whose definition relies on the defining representation of the symmetric groups. We analyze the induced orbits as well as…

Lagrangian description of Heisenberg and Landau–von Neumann equations of motion

- Physics, Mathematics
- 2020

An explicit Lagrangian description is given for the Heisenberg equation on the algebra of operators of a quantum system, and for the Landau-von Neumann equation on the manifold of quantum states…

Nonlinear description of quantum dynamics: Generalized coherent states

- Physics
- 2020

In this work it is shown that there is an inherent nonlinear evolution in the dynamics of the so-called generalized coherent states. To show this, the immersion of a classical manifold into the…

Quantum states, groups and monotone metric tensors

- MathematicsThe European Physical Journal Plus
- 2020

A novel link between monotone metric tensors and actions of suitable extensions of the unitary group on the manifold of faithful quantum states is presented here by means of three illustrative…

Covariant variational evolution and Jacobi brackets: Particles

- Mathematics
- 2020

The formulation of covariant brackets on the space of solutions to a variational problem is analyzed in the framework of contact geometry. It is argued that the Poisson algebra on the space of…

Stratified manifold of quantum states, actions of the complex special linear group

- Mathematics, PhysicsAnnals of Physics
- 2019

Geometrical Structures for Classical and Quantum Probability Spaces

- Mathematics
- 2017

On the affine space containing the space $\mathcal{S}$ of quantum states of finite-dimensional systems there are contravariant tensor fields by means of which it is possible to define Hamiltonian and…

K\"ahler geometry on complex projective spaces via reduction and unfolding.

- Mathematics
- 2018

We review how a reduction procedure along a principal fibration and an unfolding procedure associated to a suitable momentum map allow to describe the K\"ahler geometry of a finite dimensional…

## References

SHOWING 1-10 OF 48 REFERENCES

Symmetries, Group Actions, and Entanglement

- Mathematics, PhysicsOpen Syst. Inf. Dyn.
- 2006

This work addresses the geometry of the space of Hermitian operators on a finite-dimensional Hilbert space and discusses and gives examples of entanglement measures for quantum composite systems.

On the generators of quantum dynamical semigroups

- Mathematics
- 1976

The notion of a quantum dynamical semigroup is defined using the concept of a completely positive map. An explicit form of a bounded generator of such a semigroup onB(ℋ) is derived. This is a quantum…

Quantum mechanics as an infinite‐dimensional Hamiltonian system with uncertainty structure: Part II

- Physics
- 1990

Making reference to the formalism developed in Part I to formulate Schrodinger quantum mechanics, the properties of Kahlerian functions in general, almost Kahlerian manifolds, are studied.

Completely Positive Dynamical Semigroups of N Level Systems

- Mathematics
- 1976

We establish the general form of the generator of a completely positive dynamical semigroup of an N‐level quantum system, and we apply the result to derive explicit inequalities among the physical…

Normal pure states of the von Neumann algebra of bounded operators as Kähler manifold

- Mathematics
- 1983

The projective space of a complex Hilbert space H is considered both as a Kahler manifold and as the set of pure states of the von Neumann algebra B(H). A link is given between these two structures.…

Geometric Phases in Classical and Quantum Mechanics

- Physics
- 2004

Preface - Mathematical background - Adiabatic phases in quantum mechanics - Adiabatic phases in classical mechanics - Geometric approach to classical phases - Geometry of quantum evolution -…

Differential calculus on manifolds with boundary applications

- Mathematics
- 2017

This paper contains a set of lecture notes on manifolds with boundary and corners, with particular attention to the space of quantum states. A geometrically inspired way of dealing with these kind of…

On quantum statistical mechanics of non-Hamiltonian systems

- Mathematics, Physics
- 1972

Tensorial dynamics on the space of quantum states

- Mathematics, Physics
- 2017

A geometric description of the space of states of a finite-dimensional quantum system and of the Markovian evolution associated with the Kossakowski-Lindblad operator is presented. This geometric…

Geometry of quantum systems: Density states and entanglement

- Mathematics
- 2005

Various problems concerning the geometry of the space of Hermitian operators on a Hilbert space are addressed. In particular, we study the canonical Poisson and Riemann?Jordan tensors and the…