Dynamical Simulation of Red Blood Cell Rheology in Microvessels


A spring model is applied to simulate the skeleton structure of the red blood cell (RBC) membrane and to study the red blood cell (RBC) rheology in microvessels. The biconcave RBC shape in static plasma and tank-treading behavior of single cell in shear flows have been successfully captured in this model. The behavior of the RBC in a Poiseuille flow and the lateral migration of the cells in a shear flow have been investigated. It is found that the RBCs exhibit parachute shape in a Poiseuille flow with the curvature closely related to the deformability of the cell membrane and the hematocrit (Hct) of the blood. With this spring model, RBCs can recover their initial shapes associated with the minimal elastic energy when the flow stops. The simulation results also show that the RBCs migrate to the center of the domain in the radial direction in a shear flow, which clearly indicates the Fahraeus-Lindqvist effect in microvessels. The rate of migration toward the center depends on the shape of the RBC; the bioconcave shape enhences this migration.

11 Figures and Tables

Citations per Year

58 Citations

Semantic Scholar estimates that this publication has 58 citations based on the available data.

See our FAQ for additional information.

Cite this paper

@inproceedings{Pan2009DynamicalSO, title={Dynamical Simulation of Red Blood Cell Rheology in Microvessels}, author={Tsorng-Whay Pan and Tong Wang and Roland Glowinski}, year={2009} }