Dynamic phase diagram of the number partitioning problem.

@article{Junier2004DynamicPD,
  title={Dynamic phase diagram of the number partitioning problem.},
  author={Ivan Junier and Eric Bertin},
  journal={Physical review. E, Statistical, nonlinear, and soft matter physics},
  year={2004},
  volume={70 6 Pt 2},
  pages={066126}
}
We study the dynamic phase diagram of a spin model associated with the number partitioning problem, as a function of temperature and of the fraction K/N of spins allowed to flip simultaneously. The case K=1 reproduces the activated behavior of Bouchaud's trap model, whereas the opposite limit K=N can be mapped onto the entropic trap model proposed by Barrat and Mézard. In the intermediate case 1<<K<<N , the dynamics corresponds to a modified version of the Barrat and Mézard model, which… CONTINUE READING
1 Citations
11 References
Similar Papers

Citations

Publications citing this paper.

References

Publications referenced by this paper.
Showing 1-10 of 11 references

Theor

  • S. Mertens
  • Comput. Sci. 265, 79
  • 2001
Highly Influential
10 Excerpts

I (France) 2

  • J.-P. Bouchaud, J. Phys
  • 1705
  • 1992
Highly Influential
20 Excerpts

A: Math

  • F. Ritort, J. Phys
  • Gen. 36, 10791
  • 2003

Nature 410

  • P. G. Debenedetti, F. H. Stillinger
  • 259
  • 2001
2 Excerpts

Random

  • C. Borgs, J. Chayes, B. Pittel
  • Struct. Algor. 19, 247
  • 2001
2 Excerpts

Soc

  • L. F. Cugliandolo, J. Kurchan, J. Phys
  • Japan 69, 247
  • 2000
3 Excerpts

in ‘Spin-glasses and random fields

  • J.-P. Bouchaud, L. F. Cugliandolo, J. Kurchan, M. Mézard
  • A. P. Young Ed., World Scientific
  • 1998
3 Excerpts

Rev

  • H. M. Jaeger, S. R. Nagel, R. P. Behringer
  • Mod. Phys. 68, 1259
  • 1996
2 Excerpts

I (France) 5

  • A. Barrat, M. Mézard, J. Phys
  • 941
  • 1995

Phys

  • R. Monasson
  • Rev. Lett. 75, 2847
  • 1995

Similar Papers

Loading similar papers…