Dominator Colorings in Some Classes of Graphs

  title={Dominator Colorings in Some Classes of Graphs},
  author={Mustapha Chellali and Fr{\'e}d{\'e}ric Maffray},
  journal={Graphs and Combinatorics},
A dominator coloring is a coloring of the vertices of a graph such that every vertex is either alone in its color class or adjacent to all vertices of at least one other class. We present new bounds on the dominator coloring number of a graph, with applications to chordal graphs. We show how to compute the dominator coloring number in polynomial time for P4-free graphs, and we give a polynomial-time characterization of graphs with dominator coloring number at most 3. 

From This Paper

Topics from this paper.
8 Citations
8 References
Similar Papers


Publications referenced by this paper.
Showing 1-8 of 8 references

Fundamentals of Domination in Graphs

  • Haynes, T.W, S. T. Hedetniemi, P. J. Slater
  • Marcel Dekker, New York
  • 1998
1 Excerpt

On graphs having domination number half their order

  • J. F. Fink, M. S. Jacobson, L. F. Kinch, J. Roberts
  • Period. Math. Hungar. 16, 287–293
  • 1985
2 Excerpts

On a property of the class of n-colorable graphs

  • D. Seinsche
  • J. Combin. Theory B 16, 191–193
  • 1974
1 Excerpt

Theory of graphs

  • O. Ore
  • Am. Math. Soc. Colloq. Publ. 38
  • 1962
1 Excerpt

Similar Papers

Loading similar papers…