Distribution's template estimate with Wasserstein metrics

@article{Boissard2011DistributionsTE,
  title={Distribution's template estimate with Wasserstein metrics},
  author={Emmanuel Boissard and Thibaut Le Gouic and Jean-Michel Loubes},
  journal={Bernoulli},
  year={2011},
  volume={21},
  pages={740-759}
}
  • Emmanuel Boissard, Thibaut Le Gouic, Jean-Michel Loubes
  • Published 2011
  • Mathematics
  • Bernoulli
  • In this paper we tackle the problem of comparing distributions of random variables and defining a mean pattern between a sample of random events. Using barycenters of measures in the Wasserstein space, we propose an iterative version as an estimation of the mean distribution. Moreover, when the distributions are a common measure warped by a centered random operator, then the barycenter enables to recover this distribution template. 
    62 Citations
    Consistent estimation of a population barycenter in the Wasserstein space
    • 49
    • Highly Influenced
    • PDF
    Minimax Distribution Estimation in Wasserstein Distance
    • 28
    • PDF
    Consensus in the Wasserstein Metric Space of Probability Measures
    • 3
    • PDF
    Bayesian Learning with Wasserstein Barycenters
    • 12
    • PDF
    Limit laws of the empirical Wasserstein distance: Gaussian distributions
    • 44
    • PDF

    References

    SHOWING 1-10 OF 34 REFERENCES
    Barycenters in the Wasserstein Space
    • 421
    • Highly Influential
    • PDF
    Statistical properties of the quantile normalization method for density curve alignment.
    • 31
    • PDF
    Towards a coherent statistical framework for dense deformable template estimation
    • 221
    • PDF
    Non parametric estimation of the structural expectation of a stochastic increasing function
    • 15
    • PDF