# Discrete q-derivatives and symmetries of q-difference equations

@article{Levi2003DiscreteQA, title={Discrete q-derivatives and symmetries of q-difference equations}, author={D. Levi and J. Negro and M. A. Olmo}, journal={Journal of Physics A}, year={2003}, volume={37}, pages={3459-3473} }

In this paper we extend the umbral calculus, developed to deal with difference equations on uniform lattices, to q-difference equations. We show that many properties considered for shift invariant difference operators satisfying the umbral calculus can be implemented to the case of the q-difference operators. This q-umbral calculus can be used to provide solutions to linear q-difference equations and q-differential delay equations. To illustrate the method, we will apply the obtained results to… Expand

#### Figures from this paper

#### Paper Mentions

#### 16 Citations

Umbral calculus, difference equations and the discrete Schrödinger equation

- Mathematics, Physics
- 2004

In this paper, we discuss umbral calculus as a method of systematically discretizing linear differential equations while preserving their point symmetries as well as generalized symmetries. The… Expand

Kneser's theorem in q-calculus

- Mathematics
- 2005

While difference equations deal with discrete calculus and differential equations with continuous calculus, so-called q-difference equations are considered when studying q-calculus. In this paper, we… Expand

Quantum mechanics and umbral calculus

- Mathematics, Physics
- 2008

In this paper we present the first steps for obtaining a discrete Quantum Mechanics making use of the Umbral Calculus. The idea is to discretize the continuous Schrodinger equation substituting the… Expand

Continuous symmetries of difference equations

- Mathematics, Physics
- 2005

Lie group theory was originally created more than 100 years ago as a tool for solving ordinary and partial differential equations. In this article we review the results of a much more recent program:… Expand

Small divisor problem for an analytic q-difference equation

- Mathematics
- 2008

Abstract Similar to the problem of linearization, the “small divisor problem” also arises in the discussion of invertible analytic solutions of a class of q -difference equations. In this paper we… Expand

Small Divisor Problem in Dynamical Systems and Analytic Solutions of a q-Difference Equation with a Singularity at the Origin

- Mathematics
- 2010

AbstractIn this paper, we consider a q-difference equation
$$\sum_{j=0}^{k}\sum_{t=1}^{\infty}C_{t,j}(z)(y(q^jz))^{t}=G(z)$$in the complex field $${\mathbb C,}$$ where Ct,j(z) and G(z) have a h1… Expand

Lie Symmetries for Lattice Equations

- Mathematics
- 2004

Lie symmetries has been introduced by Sophus Lie to study differential equations. It has been one of the most efficient way for obtaining exact analytic solution of differential equations. Here we… Expand

Construction of q-discrete two-dimensional Toda lattice equation with self-consistent sources

- Mathematics
- 2007

Abstract The q-discrete two-dimensional Toda lattice equation with self-consistent sources is presented through the source generalization procedure. In addition, the Grammtype determinant solutions… Expand

Rota-Baxter operators on pre-Lie algebras

- Mathematics
- 2007

Abstract Rota-Baxter operators or relations were introduced to solve certain analytic and combinatorial problems and then applied to many fields in mathematics and mathematical physics. In this… Expand

Umbral Calculus, Difference Equations and the

- Mathematics
- 2008

We discuss umbral calculus as a method of systematically discretizing linear differential equations while preserving their point symmetries as well as generalized symmetries. The method is then… Expand

#### References

SHOWING 1-10 OF 40 REFERENCES

Umbral calculus, difference equations and the discrete Schrödinger equation

- Mathematics, Physics
- 2004

In this paper, we discuss umbral calculus as a method of systematically discretizing linear differential equations while preserving their point symmetries as well as generalized symmetries. The… Expand

Quantum symmetries of q‐difference equations

- Mathematics
- 1995

A general method is presented to determine the symmetry operators of linear q‐difference equations. It is applied to q‐difference analogs of the Helmoltz, heat, and wave equations in diverse… Expand

Symmetries of theq-difference heat equation

- Mathematics
- 1994

The symmetry operators of aq-difference analog of the heat equation in one space dimension are determined. They are seen to generate aq-deformation of the semidirect product of sl(2, ℝ) with the… Expand

Discrete derivatives and symmetries of difference equations

- Mathematics, Physics
- 2001

We show with an example of the discrete heat equation that for any given discrete derivative we can construct a nontrivial Leibniz rule suitable for finding the symmetries of discrete equations. In… Expand

Lie symmetries of difference equations

- Mathematics, Physics
- 2001

The discrete heat equation is worked out to illustrate the search of symmetries of difference equations. Special attention it is paid to the Lie structure of these symmetries, as well as to their… Expand

Canonical commutation relation preserving maps

- Mathematics, Physics
- 2001

We study maps preserving the Heisenberg commutation relation ab - ba = 1. We find a one-parameter deformation of the standard realization of the above algebra in terms of a coordinate and its dual… Expand

Lie group formalism for difference equations

- Mathematics
- 1997

The methods of Lie group analysis of differential equations are generalized so as to provide an infinitesimal formalism for calculating symmetries of difference equations. Several examples are… Expand

Twisted conformal algebra so(4, 2)

- Mathematics, Physics
- 2002

A new twisted deformation, Uz(so(4, 2)), of the conformal algebra of the (3 + 1)-dimensional Minkowskian spacetime is presented. This construction is provided by a classical r-matrix spanned by ten… Expand

The Umbral Calculus

- Mathematics
- 1984

In this chapter, we give a brief introduction to a relatively new subject, called the umbral calculus. This is an algebraic theory used to study certain types of polynomial functions that play an… Expand

Symmetries of the heat equation on the lattice

- Mathematics
- 1996

Discrete versions of the heat equation on two-dimensional uniform lattices are shown to possess the same symmetry algebra as their continuum limits. Solutions with definite symmetry properties are… Expand