Discrete Time-Crystalline Order in Cavity and Circuit QED Systems.
@article{Gong2017DiscreteTO, title={Discrete Time-Crystalline Order in Cavity and Circuit QED Systems.}, author={Zongping Gong and Ryusuke Hamazaki and Masahito Ueda}, journal={Physical review letters}, year={2017}, volume={120 4}, pages={ 040404 } }
Discrete time crystals are a recently proposed and experimentally observed out-of-equilibrium dynamical phase of Floquet systems, where the stroboscopic dynamics of a local observable repeats itself at an integer multiple of the driving period. We address this issue in a driven-dissipative setup, focusing on the modulated open Dicke model, which can be implemented by cavity or circuit QED systems. In the thermodynamic limit, we employ semiclassical approaches and find rich dynamical phases on…
116 Citations
Discrete Time Crystals in the Absence of Manifest Symmetries or Disorder in Open Quantum Systems.
- PhysicsPhysical review letters
- 2019
A semiclassical approach reveals the emergence of a robust discrete time-crystalline phase in the thermodynamic limit in which metastability, dissipation, and interparticle interactions play a crucial role.
Dissipative discrete time crystals
- Physics
- 2018
Periodically driven quantum systems host a range of non-equilibrium phenomena which are unrealizable at equilibrium. Discrete time-translational symmetry in a periodically driven many-body system can…
Time crystallinity in open quantum systems
- PhysicsQuantum
- 2020
A way to identify an open system time crystal based on a single object: the Floquet propagator is proposed and time-crystalline behavior in an explicitly short-range interacting open system is shown and the crucial role of the nature of the decay processes is demonstrated.
Signatures of discrete time crystalline order in dissipative spin ensembles
- PhysicsNew Journal of Physics
- 2020
Discrete time-translational symmetry in a periodically driven many-body system can be spontaneously broken to form a discrete time crystal, an exotic new phase of matter. We present observations…
Time crystals in a shaken atom-cavity system
- PhysicsPhysical Review A
- 2019
We demonstrate the emergence of a time crystal of atoms in a high-finesse optical cavity driven by a phase-modulated transverse pump field, resulting in a shaken lattice. This shaken system exhibits…
Time crystals: Analysis of experimental conditions
- PhysicsPhysical Review A
- 2018
Time crystals are quantum many-body systems which are able to self-organize their motion in a periodic way in time. Discrete time crystals have been experimentally demonstrated in spin systems.…
Dynamical phase transition in Floquet optical bistable systems: An approach from finite-size quantum systems
- PhysicsPhysical Review A
- 2020
Dynamical response of an optical bistable system to a time-periodic driving field is studied. We found a phase transition in the structure of limit cycle as a function of the frequency of the driving…
Dynamical quantum phase transitions in discrete time crystals
- PhysicsPhysical Review A
- 2018
Discrete time crystals are related to non-equilibrium dynamics of periodically driven quantum many-body systems where the discrete time translation symmetry of the Hamiltonian is spontaneously broken…
From a continuous to a discrete time crystal in a dissipative atom-cavity system
- PhysicsNew Journal of Physics
- 2020
We propose the dynamical stabilization of a nonequilibrium order in a driven dissipative system comprised an atomic Bose–Einstein condensate inside a high finesse optical cavity, pumped with an…
The role of fluctuations in quantum and classical time crystals
- Physics
- 2022
Discrete time crystals (DTCs) are a many-body state of matter whose dynamics are slower than the forces acting on it. The same is true for classical systems with period-doubling bifurcations. Hence,…
References
SHOWING 1-10 OF 138 REFERENCES
Observation of discrete time-crystalline order in a disordered dipolar many-body system
- PhysicsNature
- 2017
This work observes long-lived temporal correlations, experimentally identifies the phase boundary and finds that the temporal order is protected by strong interactions, which opens the door to exploring dynamical phases of matter and controlling interacting, disordered many-body systems.
Discrete Time Crystals: Rigidity, Criticality, and Realizations.
- PhysicsPhysical review letters
- 2017
A simple model for a one-dimensional discrete time crystal which explicitly reveals the rigidity of the emergent oscillations as the drive is varied is considered and a blueprint based upon a one dimensional chain of trapped ions is proposed.
Observation of a discrete time crystal
- PhysicsNature
- 2017
The experimental observation of a discrete time crystal, in an interacting spin chain of trapped atomic ions, is presented, which opens the door to the study of systems with long-range spatio-temporal correlations and novel phases of matter that emerge under intrinsically non-equilibrium conditions.
Dynamical many-body phases of the parametrically driven, dissipative Dicke model
- Physics
- 2015
The dissipative Dicke model exhibits a fascinating out-of-equilibrium many-body phase transition as a function of a coupling between a driven photonic cavity and numerous two-level atoms. We study…
Equilibrium states of generic quantum systems subject to periodic driving.
- PhysicsPhysical review. E, Statistical, nonlinear, and soft matter physics
- 2014
It is shown that for generic nonintegrable interacting systems, local observables become independent of the initial state entirely.
Prethermal time crystals in a one-dimensional periodically driven Floquet system
- Physics
- 2017
Motivated by experimental observations of time-symmetry breaking behavior in a periodically driven (Floquet) system, we study a one-dimensional spin model to explore the stability of such Floquet…
Chaos and the quantum phase transition in the Dicke model.
- PhysicsPhysical review. E, Statistical, nonlinear, and soft matter physics
- 2003
A semiclassical Dicke model is derived that exhibits analogues of all the important features of the quantum model, such as the phase transition and the concurrent onset of chaos, and it is demonstrated that the system undergoes a transition from quasi-integrability to quantum chaotic.
Critical Time Crystals in Dipolar Systems.
- PhysicsPhysical review letters
- 2017
The authors demonstrate the existence of a novel, critical DTC regime that is stabilized not by many-body localization but rather by slow, critical dynamics, and shows that the DTC response can be used as a sensitive probe of nonequilibrium quantum matter.
Critical dynamical properties of a first-order dissipative phase transition
- Physics
- 2017
We theoretically investigate the critical properties of a single driven-dissipative nonlinear photon mode. In a well-defined thermodynamical limit of large excitation numbers, the exact quantum…
Phase Structure of Driven Quantum Systems.
- PhysicsPhysical review letters
- 2016
It is shown that their disordered Floquet many-body localized counterparts can exhibit distinct ordered phases delineated by sharp transitions, and these are analogs of equilibrium states with broken symmetries and topological order.